fix broken when image is not square
Browse files- mediapipe_transform.py +227 -136
mediapipe_transform.py
CHANGED
@@ -4,36 +4,58 @@ import mp_triangles
|
|
4 |
import time
|
5 |
from PIL import Image
|
6 |
|
7 |
-
from glibvision.cv2_utils import
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
import numba as nb
|
|
|
|
|
11 |
@nb.jit(nopython=True, parallel=True)
|
12 |
def blend_rgb_images_numba(image1, image2, mask):
|
13 |
height, width, _ = image1.shape
|
14 |
result = np.empty((height, width, 3), dtype=np.float32)
|
15 |
-
|
16 |
for i in nb.prange(height):
|
17 |
for j in range(width):
|
18 |
alpha = mask[i, j] / 255.0
|
19 |
for k in range(3):
|
20 |
-
result[i, j, k] = (1 - alpha) * image1[i, j, k] + alpha * image2[
|
21 |
-
|
|
|
|
|
22 |
return result.astype(np.uint8)
|
23 |
|
|
|
24 |
@nb.jit(nopython=True, parallel=True)
|
25 |
def blend_rgba_images_numba(image1, image2, mask):
|
26 |
-
assert
|
|
|
|
|
27 |
channel = image1.shape[2]
|
28 |
height, width, _ = image1.shape
|
29 |
result = np.empty((height, width, channel), dtype=np.float32)
|
30 |
-
|
31 |
for i in nb.prange(height):
|
32 |
for j in range(width):
|
33 |
alpha = mask[i, j] / 255.0
|
34 |
for k in range(channel):
|
35 |
-
result[i, j, k] = (1 - alpha) * image1[i, j, k] + alpha * image2[
|
36 |
-
|
|
|
|
|
37 |
return result.astype(np.uint8)
|
38 |
|
39 |
|
@@ -46,26 +68,30 @@ bug some hide value make white
|
|
46 |
"""
|
47 |
debug_affinn = False
|
48 |
min_affin_plus = 0.1
|
|
|
|
|
49 |
def apply_affine_transformation_to_triangle(src_tri, dst_tri, src_img, dst_img):
|
50 |
-
|
51 |
src_tri_np = np.float32(src_tri)
|
52 |
dst_tri_np = np.float32(dst_tri)
|
53 |
|
54 |
assert src_tri_np.shape == (3, 2), f"src_tri_np の形状が不正 {src_tri_np.shape}"
|
55 |
assert dst_tri_np.shape == (3, 2), f"dst_tri_np の形状が不正 {dst_tri_np.shape}"
|
56 |
|
57 |
-
|
58 |
-
#trying avoid same value,or M will broken
|
59 |
if (src_tri_np[0] == src_tri_np[1]).all():
|
60 |
-
src_tri_np[0]+=min_affin_plus
|
61 |
if (src_tri_np[0] == src_tri_np[2]).all():
|
62 |
-
src_tri_np[0]+=min_affin_plus
|
63 |
if (src_tri_np[1] == src_tri_np[2]).all():
|
64 |
-
src_tri_np[1]+=min_affin_plus
|
65 |
if (src_tri_np[1] == src_tri_np[0]).all():
|
66 |
-
src_tri_np[1]+=min_affin_plus
|
67 |
|
68 |
-
if (
|
|
|
|
|
|
|
|
|
69 |
print("same will white noise happen")
|
70 |
# 透視変換行列の計算
|
71 |
M = cv2.getAffineTransform(src_tri_np, dst_tri_np)
|
@@ -74,43 +100,42 @@ def apply_affine_transformation_to_triangle(src_tri, dst_tri, src_img, dst_img):
|
|
74 |
h_dst, w_dst = dst_img.shape[:2]
|
75 |
|
76 |
# 元画像から三角形領域を切り抜くマスク生成
|
77 |
-
#src_mask = np.zeros((h_src, w_src), dtype=np.uint8)
|
78 |
-
#cv2.fillPoly(src_mask, [np.int32(src_tri)], 255)
|
79 |
|
80 |
# Not 元画像の三角形領域のみをマスクで抽出
|
81 |
-
src_triangle = src_img
|
82 |
|
83 |
# 変換行列を使って元画像の三角形領域を目標画像のサイズへ変換
|
84 |
-
|
85 |
-
|
86 |
transformed = cv2.warpAffine(src_triangle, M, (w_dst, h_dst))
|
87 |
if debug_affinn:
|
88 |
-
cv2.imwrite(
|
89 |
-
cv2.imwrite(
|
90 |
|
91 |
-
#print(f"dst_img={dst_img.shape}")
|
92 |
-
#print(f"transformed={transformed.shape}")
|
93 |
# 変換後のマスクの生成
|
94 |
dst_mask = np.zeros((h_dst, w_dst), dtype=np.uint8)
|
95 |
cv2.fillPoly(dst_mask, [np.int32(dst_tri)], 255)
|
96 |
|
97 |
# ���標画像のマスク領域をクリアするためにデストのインバートマスクを作成
|
98 |
-
#dst_mask_inv = cv2.bitwise_not(dst_mask)
|
99 |
|
100 |
# 目標画像のマスク部分をクリア
|
101 |
-
#dst_background = cv2.bitwise_and(dst_img, dst_img, mask=dst_mask_inv)
|
102 |
|
103 |
# 変換された元画像の三角形部分と目標画像の背景部分を合成
|
104 |
-
#dst_img = cv2.add(dst_background, transformed)
|
105 |
-
#s = time.time()
|
106 |
-
#dst_img = blend_rgb_images(dst_img,transformed,dst_mask)
|
107 |
|
108 |
use_blend_rgb = False
|
109 |
if use_blend_rgb:
|
110 |
-
if src_img.shape[2] == 3:
|
111 |
-
dst_img = blend_rgb_images_numba(dst_img,transformed,dst_mask)
|
112 |
else:
|
113 |
-
dst_img = blend_rgba_images_numba(dst_img,transformed,dst_mask)
|
114 |
else:
|
115 |
dst_mask_inv = cv2.bitwise_not(dst_mask)
|
116 |
transformed = cv2.bitwise_and(transformed, transformed, mask=dst_mask)
|
@@ -118,166 +143,232 @@ def apply_affine_transformation_to_triangle(src_tri, dst_tri, src_img, dst_img):
|
|
118 |
dst_img = cv2.add(dst_img, transformed)
|
119 |
|
120 |
# TODO add rgb mode
|
121 |
-
|
122 |
-
|
123 |
-
#print(f"blend {time.time() -s}")
|
124 |
if debug_affinn:
|
125 |
-
cv2.imwrite(
|
126 |
-
cv2.imwrite(
|
127 |
return dst_img
|
128 |
|
129 |
|
|
|
130 |
|
131 |
-
from skimage.exposure import match_histograms
|
132 |
-
def color_match(base_image,cropped_image,color_match_format="RGB"):
|
133 |
-
reference = np.array(base_image.convert(color_match_format))
|
134 |
-
target =np.array(cropped_image.convert(color_match_format))
|
135 |
-
matched = match_histograms(target, reference,channel_axis=-1)
|
136 |
-
|
137 |
-
return Image.fromarray(matched,mode=color_match_format)
|
138 |
-
|
139 |
-
def process_landmark_transform(image,transform_target_image,
|
140 |
-
innner_mouth,innner_eyes,
|
141 |
-
color_matching=False,transparent_background=False,add_align_mouth=False,add_align_eyes=False,blur_size=0):
|
142 |
-
image_h,image_w = image.shape[:2]
|
143 |
-
align_h,align_w = transform_target_image.shape[:2]
|
144 |
-
|
145 |
-
mp_image,image_face_landmarker_result = extract_landmark(image)
|
146 |
-
image_larndmarks=image_face_landmarker_result.face_landmarks
|
147 |
-
image_bbox = get_landmark_bbox(image_larndmarks,image_w,image_h,16,16)
|
148 |
|
149 |
-
|
150 |
-
|
151 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
|
153 |
if color_matching:
|
154 |
-
image_cropped = crop(image,image_bbox)
|
155 |
-
target_cropped = crop(transform_target_image,align_bbox)
|
156 |
-
matched = match_histograms(image_cropped, target_cropped,channel_axis=-1)
|
157 |
-
paste(image,matched,image_bbox[0],image_bbox[1])
|
158 |
-
|
159 |
|
160 |
landmark_points = get_normalized_landmarks(align_larndmarks)
|
161 |
-
|
162 |
-
mesh_triangle_indices =
|
163 |
-
|
164 |
-
#
|
|
|
|
|
165 |
mesh_triangle_indices += mp_triangles.INNER_MOUTH
|
166 |
-
|
167 |
-
mesh_triangle_indices +=
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
|
|
173 |
|
174 |
triangle_size = len(mesh_triangle_indices)
|
175 |
-
print(f"triangle_size = {triangle_size},time ={0.1*triangle_size}")
|
176 |
s = time.time()
|
177 |
-
|
178 |
need_transparent_way = transparent_background == True or blur_size > 0
|
179 |
-
if need_transparent_way
|
180 |
-
transparent_image = np.zeros_like(
|
|
|
|
|
181 |
h, w = transparent_image.shape[:2]
|
182 |
-
cv2.rectangle(transparent_image, (0, 0), (w, h), (0,0,0,0), -1)
|
183 |
|
184 |
applied_image = transparent_image
|
185 |
image = cv2.cvtColor(image, cv2.COLOR_BGR2BGRA)
|
186 |
-
|
187 |
else:
|
188 |
applied_image = transform_target_image
|
189 |
-
|
190 |
-
for i in range(0,triangle_size)
|
191 |
triangle_indices = mesh_triangle_indices[i]
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
#
|
201 |
-
#print(
|
202 |
-
|
203 |
-
|
204 |
-
|
|
|
|
|
|
|
|
|
|
|
205 |
if need_transparent_way:
|
206 |
blur_radius = blur_size
|
207 |
-
if blur_radius!=0 and blur_radius%2 == 0:
|
208 |
-
blur_radius+=1
|
209 |
-
|
210 |
-
b, g, r,a = cv2.split(applied_image)
|
211 |
-
applied_image = cv2.merge([b,g,r])
|
212 |
mask = a.copy()
|
213 |
dilate = blur_radius
|
214 |
kernel = np.ones((dilate, dilate), np.uint8)
|
215 |
mask = cv2.erode(mask, kernel, iterations=1)
|
216 |
|
217 |
-
if blur_radius>0:
|
218 |
-
blurred_image = cv2.GaussianBlur(
|
|
|
|
|
219 |
else:
|
220 |
blurred_image = mask
|
221 |
|
222 |
if transparent_background:
|
223 |
-
#transform_target_image = np.zeros_like(cv2.cvtColor(transform_target_image, cv2.COLOR_BGR2BGRA))
|
224 |
-
transform_target_image=cv2.cvtColor(
|
225 |
-
|
|
|
|
|
226 |
else:
|
227 |
-
applied_image = blend_rgb_images(
|
|
|
|
|
228 |
|
229 |
# after mix
|
230 |
-
if
|
231 |
-
|
|
|
|
|
|
|
232 |
import mp_constants
|
233 |
-
|
|
|
234 |
if not innner_mouth or (transparent_background and add_align_mouth):
|
235 |
-
mouth_cordinates = get_pixel_cordinate_list(
|
|
|
|
|
236 |
cv2.fillPoly(dst_mask, [np.int32(mouth_cordinates)], 255)
|
237 |
|
238 |
-
if
|
239 |
-
cv2.fillPoly(
|
|
|
|
|
|
|
240 |
if not innner_eyes or (transparent_background and add_align_eyes):
|
241 |
-
|
242 |
-
|
243 |
-
|
|
|
244 |
cv2.fillPoly(dst_mask, [np.int32(left_eyes_cordinates)], 255)
|
245 |
|
246 |
-
right_eyes_cordinates = get_pixel_cordinate_list(
|
|
|
|
|
247 |
cv2.fillPoly(dst_mask, [np.int32(right_eyes_cordinates)], 255)
|
248 |
|
249 |
-
if
|
250 |
-
cv2.fillPoly(
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
256 |
|
257 |
return applied_image
|
258 |
|
259 |
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
264 |
image = pil_to_bgr_image(pil_image)
|
265 |
align_target_image = pil_to_bgr_image(pil_align_target_image)
|
266 |
-
cv_result = process_landmark_transform(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
267 |
if transparent_background:
|
268 |
return Image.fromarray(cv2.cvtColor(cv_result, cv2.COLOR_BGRA2RGBA))
|
269 |
else:
|
270 |
return Image.fromarray(cv2.cvtColor(cv_result, cv2.COLOR_BGR2RGB))
|
271 |
|
|
|
272 |
if __name__ == "__main__":
|
273 |
-
#image = Image.open('examples/00002062.jpg')
|
274 |
-
#align_target = Image.open('examples/02316230.jpg')
|
275 |
-
image = cv2.imread(
|
276 |
-
align_target = cv2.imread(
|
277 |
-
result_img = process_landmark_transform(image,align_target)
|
278 |
|
279 |
-
cv2.imshow(
|
280 |
cv2.waitKey(0)
|
281 |
cv2.destroyAllWindows()
|
282 |
|
283 |
-
cv2.imwrite(
|
|
|
4 |
import time
|
5 |
from PIL import Image
|
6 |
|
7 |
+
from glibvision.cv2_utils import (
|
8 |
+
blend_rgb_images,
|
9 |
+
pil_to_bgr_image,
|
10 |
+
fill_points,
|
11 |
+
crop,
|
12 |
+
paste,
|
13 |
+
)
|
14 |
+
from mp_utils import (
|
15 |
+
get_pixel_cordinate_list,
|
16 |
+
extract_landmark,
|
17 |
+
get_pixel_cordinate,
|
18 |
+
get_normalized_landmarks,
|
19 |
+
sort_triangles_by_depth,
|
20 |
+
get_landmark_bbox,
|
21 |
+
)
|
22 |
|
23 |
import numba as nb
|
24 |
+
|
25 |
+
|
26 |
@nb.jit(nopython=True, parallel=True)
|
27 |
def blend_rgb_images_numba(image1, image2, mask):
|
28 |
height, width, _ = image1.shape
|
29 |
result = np.empty((height, width, 3), dtype=np.float32)
|
30 |
+
|
31 |
for i in nb.prange(height):
|
32 |
for j in range(width):
|
33 |
alpha = mask[i, j] / 255.0
|
34 |
for k in range(3):
|
35 |
+
result[i, j, k] = (1 - alpha) * image1[i, j, k] + alpha * image2[
|
36 |
+
i, j, k
|
37 |
+
]
|
38 |
+
|
39 |
return result.astype(np.uint8)
|
40 |
|
41 |
+
|
42 |
@nb.jit(nopython=True, parallel=True)
|
43 |
def blend_rgba_images_numba(image1, image2, mask):
|
44 |
+
assert (
|
45 |
+
image1.shape[2] == image2.shape[2]
|
46 |
+
), f"Input images must be same image1 = {image1.shape[2]} image2 ={image2.shape[2]}"
|
47 |
channel = image1.shape[2]
|
48 |
height, width, _ = image1.shape
|
49 |
result = np.empty((height, width, channel), dtype=np.float32)
|
50 |
+
|
51 |
for i in nb.prange(height):
|
52 |
for j in range(width):
|
53 |
alpha = mask[i, j] / 255.0
|
54 |
for k in range(channel):
|
55 |
+
result[i, j, k] = (1 - alpha) * image1[i, j, k] + alpha * image2[
|
56 |
+
i, j, k
|
57 |
+
]
|
58 |
+
|
59 |
return result.astype(np.uint8)
|
60 |
|
61 |
|
|
|
68 |
"""
|
69 |
debug_affinn = False
|
70 |
min_affin_plus = 0.1
|
71 |
+
|
72 |
+
|
73 |
def apply_affine_transformation_to_triangle(src_tri, dst_tri, src_img, dst_img):
|
|
|
74 |
src_tri_np = np.float32(src_tri)
|
75 |
dst_tri_np = np.float32(dst_tri)
|
76 |
|
77 |
assert src_tri_np.shape == (3, 2), f"src_tri_np の形状が不正 {src_tri_np.shape}"
|
78 |
assert dst_tri_np.shape == (3, 2), f"dst_tri_np の形状が不正 {dst_tri_np.shape}"
|
79 |
|
80 |
+
# trying avoid same value,or M will broken
|
|
|
81 |
if (src_tri_np[0] == src_tri_np[1]).all():
|
82 |
+
src_tri_np[0] += min_affin_plus
|
83 |
if (src_tri_np[0] == src_tri_np[2]).all():
|
84 |
+
src_tri_np[0] += min_affin_plus
|
85 |
if (src_tri_np[1] == src_tri_np[2]).all():
|
86 |
+
src_tri_np[1] += min_affin_plus
|
87 |
if (src_tri_np[1] == src_tri_np[0]).all():
|
88 |
+
src_tri_np[1] += min_affin_plus
|
89 |
|
90 |
+
if (
|
91 |
+
(src_tri_np[1] == src_tri_np[0]).all()
|
92 |
+
or (src_tri_np[1] == src_tri_np[2]).all()
|
93 |
+
or (src_tri_np[2] == src_tri_np[0]).all()
|
94 |
+
):
|
95 |
print("same will white noise happen")
|
96 |
# 透視変換行列の計算
|
97 |
M = cv2.getAffineTransform(src_tri_np, dst_tri_np)
|
|
|
100 |
h_dst, w_dst = dst_img.shape[:2]
|
101 |
|
102 |
# 元画像から三角形領域を切り抜くマスク生成
|
103 |
+
# src_mask = np.zeros((h_src, w_src), dtype=np.uint8)
|
104 |
+
# cv2.fillPoly(src_mask, [np.int32(src_tri)], 255)
|
105 |
|
106 |
# Not 元画像の三角形領域のみをマスクで抽出
|
107 |
+
src_triangle = src_img # cv2.bitwise_and(src_img, src_img, mask=src_mask)
|
108 |
|
109 |
# 変換行列を使って元画像の三角形領域を目標画像のサイズへ変換
|
110 |
+
|
|
|
111 |
transformed = cv2.warpAffine(src_triangle, M, (w_dst, h_dst))
|
112 |
if debug_affinn:
|
113 |
+
cv2.imwrite("affin_src.jpg", src_triangle)
|
114 |
+
cv2.imwrite("affin_transformed.jpg", transformed)
|
115 |
|
116 |
+
# print(f"dst_img={dst_img.shape}")
|
117 |
+
# print(f"transformed={transformed.shape}")
|
118 |
# 変換後のマスクの生成
|
119 |
dst_mask = np.zeros((h_dst, w_dst), dtype=np.uint8)
|
120 |
cv2.fillPoly(dst_mask, [np.int32(dst_tri)], 255)
|
121 |
|
122 |
# ���標画像のマスク領域をクリアするためにデストのインバートマスクを作成
|
123 |
+
# dst_mask_inv = cv2.bitwise_not(dst_mask)
|
124 |
|
125 |
# 目標画像のマスク部分をクリア
|
126 |
+
# dst_background = cv2.bitwise_and(dst_img, dst_img, mask=dst_mask_inv)
|
127 |
|
128 |
# 変換された元画像の三角形部分と目標画像の背景部分を合成
|
129 |
+
# dst_img = cv2.add(dst_background, transformed)
|
130 |
+
# s = time.time()
|
131 |
+
# dst_img = blend_rgb_images(dst_img,transformed,dst_mask)
|
132 |
|
133 |
use_blend_rgb = False
|
134 |
if use_blend_rgb:
|
135 |
+
if src_img.shape[2] == 3:
|
136 |
+
dst_img = blend_rgb_images_numba(dst_img, transformed, dst_mask)
|
137 |
else:
|
138 |
+
dst_img = blend_rgba_images_numba(dst_img, transformed, dst_mask)
|
139 |
else:
|
140 |
dst_mask_inv = cv2.bitwise_not(dst_mask)
|
141 |
transformed = cv2.bitwise_and(transformed, transformed, mask=dst_mask)
|
|
|
143 |
dst_img = cv2.add(dst_img, transformed)
|
144 |
|
145 |
# TODO add rgb mode
|
146 |
+
|
147 |
+
# print(f"blend {time.time() -s}")
|
|
|
148 |
if debug_affinn:
|
149 |
+
cv2.imwrite("affin_transformed_masked.jpg", transformed)
|
150 |
+
cv2.imwrite("affin_dst_mask.jpg", dst_mask)
|
151 |
return dst_img
|
152 |
|
153 |
|
154 |
+
from skimage.exposure import match_histograms
|
155 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
|
157 |
+
def color_match(base_image, cropped_image, color_match_format="RGB"):
|
158 |
+
reference = np.array(base_image.convert(color_match_format))
|
159 |
+
target = np.array(cropped_image.convert(color_match_format))
|
160 |
+
matched = match_histograms(target, reference, channel_axis=-1)
|
161 |
+
|
162 |
+
return Image.fromarray(matched, mode=color_match_format)
|
163 |
+
|
164 |
+
|
165 |
+
def process_landmark_transform(
|
166 |
+
image,
|
167 |
+
transform_target_image,
|
168 |
+
innner_mouth,
|
169 |
+
innner_eyes,
|
170 |
+
color_matching=False,
|
171 |
+
transparent_background=False,
|
172 |
+
add_align_mouth=False,
|
173 |
+
add_align_eyes=False,
|
174 |
+
blur_size=0,
|
175 |
+
):
|
176 |
+
image_h, image_w = image.shape[:2]
|
177 |
+
align_h, align_w = transform_target_image.shape[:2]
|
178 |
+
|
179 |
+
mp_image, image_face_landmarker_result = extract_landmark(image)
|
180 |
+
image_larndmarks = image_face_landmarker_result.face_landmarks
|
181 |
+
image_bbox = get_landmark_bbox(image_larndmarks, image_w, image_h, 16, 16)
|
182 |
+
|
183 |
+
mp_image, align_face_landmarker_result = extract_landmark(transform_target_image)
|
184 |
+
align_larndmarks = align_face_landmarker_result.face_landmarks
|
185 |
+
align_bbox = get_landmark_bbox(align_larndmarks, align_w, align_h, 16, 16)
|
186 |
|
187 |
if color_matching:
|
188 |
+
image_cropped = crop(image, image_bbox)
|
189 |
+
target_cropped = crop(transform_target_image, align_bbox)
|
190 |
+
matched = match_histograms(image_cropped, target_cropped, channel_axis=-1)
|
191 |
+
paste(image, matched, image_bbox[0], image_bbox[1])
|
|
|
192 |
|
193 |
landmark_points = get_normalized_landmarks(align_larndmarks)
|
194 |
+
|
195 |
+
mesh_triangle_indices = (
|
196 |
+
mp_triangles.mesh_triangle_indices.copy()
|
197 |
+
) # using directly sometime share
|
198 |
+
|
199 |
+
# always mix for blur
|
200 |
mesh_triangle_indices += mp_triangles.INNER_MOUTH
|
201 |
+
|
202 |
+
mesh_triangle_indices += (
|
203 |
+
mp_triangles.INNER_LEFT_EYES + mp_triangles.INNER_RIGHT_EYES
|
204 |
+
)
|
205 |
+
# print(mesh_triangle_indices)
|
206 |
+
sort_triangles_by_depth(landmark_points, mesh_triangle_indices)
|
207 |
+
|
208 |
+
# mesh_triangle_indices = mp_triangles.contour_to_triangles(True,draw_updown_contour) + mp_triangles.contour_to_triangles(False,draw_updown_contour)+ mp_triangles.mesh_triangle_indices
|
209 |
|
210 |
triangle_size = len(mesh_triangle_indices)
|
211 |
+
# print(f"triangle_size = {triangle_size},time ={0.1*triangle_size}")
|
212 |
s = time.time()
|
213 |
+
|
214 |
need_transparent_way = transparent_background == True or blur_size > 0
|
215 |
+
if need_transparent_way: # convert Alpha
|
216 |
+
transparent_image = np.zeros_like(
|
217 |
+
cv2.cvtColor(transform_target_image, cv2.COLOR_BGR2BGRA)
|
218 |
+
)
|
219 |
h, w = transparent_image.shape[:2]
|
220 |
+
cv2.rectangle(transparent_image, (0, 0), (w, h), (0, 0, 0, 0), -1)
|
221 |
|
222 |
applied_image = transparent_image
|
223 |
image = cv2.cvtColor(image, cv2.COLOR_BGR2BGRA)
|
224 |
+
|
225 |
else:
|
226 |
applied_image = transform_target_image
|
227 |
+
|
228 |
+
for i in range(0, triangle_size): #
|
229 |
triangle_indices = mesh_triangle_indices[i]
|
230 |
+
|
231 |
+
image_points = get_pixel_cordinate_list(
|
232 |
+
image_larndmarks, triangle_indices, image_w, image_h
|
233 |
+
)
|
234 |
+
|
235 |
+
align_points = get_pixel_cordinate_list(
|
236 |
+
align_larndmarks, triangle_indices, align_w, align_h
|
237 |
+
)
|
238 |
+
# print(image_points)
|
239 |
+
# print(align_points)
|
240 |
+
# fill_points(image,image_points,thickness=3,fill_color=(0,0,0,0))
|
241 |
+
# s = time.time()
|
242 |
+
# print(f"applied_image={applied_image.shape}")
|
243 |
+
applied_image = apply_affine_transformation_to_triangle(
|
244 |
+
image_points, align_points, image, applied_image
|
245 |
+
)
|
246 |
+
|
247 |
+
# print(f"take time {time.time()-s}")
|
248 |
if need_transparent_way:
|
249 |
blur_radius = blur_size
|
250 |
+
if blur_radius != 0 and blur_radius % 2 == 0:
|
251 |
+
blur_radius += 1
|
252 |
+
|
253 |
+
b, g, r, a = cv2.split(applied_image)
|
254 |
+
applied_image = cv2.merge([b, g, r])
|
255 |
mask = a.copy()
|
256 |
dilate = blur_radius
|
257 |
kernel = np.ones((dilate, dilate), np.uint8)
|
258 |
mask = cv2.erode(mask, kernel, iterations=1)
|
259 |
|
260 |
+
if blur_radius > 0:
|
261 |
+
blurred_image = cv2.GaussianBlur(
|
262 |
+
mask, (blur_radius, blur_radius), 0
|
263 |
+
) # should be odd
|
264 |
else:
|
265 |
blurred_image = mask
|
266 |
|
267 |
if transparent_background:
|
268 |
+
# transform_target_image = np.zeros_like(cv2.cvtColor(transform_target_image, cv2.COLOR_BGR2BGRA))
|
269 |
+
transform_target_image = cv2.cvtColor(
|
270 |
+
transform_target_image, cv2.COLOR_BGR2BGRA
|
271 |
+
)
|
272 |
+
applied_image = cv2.merge([b, g, r, blurred_image])
|
273 |
else:
|
274 |
+
applied_image = blend_rgb_images(
|
275 |
+
transform_target_image, applied_image, blurred_image
|
276 |
+
)
|
277 |
|
278 |
# after mix
|
279 |
+
if (
|
280 |
+
not innner_mouth
|
281 |
+
or not innner_eyes
|
282 |
+
or (transparent_background and (add_align_mouth or add_align_eyes))
|
283 |
+
):
|
284 |
import mp_constants
|
285 |
+
|
286 |
+
dst_mask = np.zeros((align_h, align_w), dtype=np.uint8)
|
287 |
if not innner_mouth or (transparent_background and add_align_mouth):
|
288 |
+
mouth_cordinates = get_pixel_cordinate_list(
|
289 |
+
align_larndmarks, mp_constants.LINE_INNER_MOUTH, align_w, align_h
|
290 |
+
)
|
291 |
cv2.fillPoly(dst_mask, [np.int32(mouth_cordinates)], 255)
|
292 |
|
293 |
+
if transparent_background and not add_align_mouth:
|
294 |
+
cv2.fillPoly(
|
295 |
+
transform_target_image, [np.int32(mouth_cordinates)], [0, 0, 0, 0]
|
296 |
+
)
|
297 |
+
|
298 |
if not innner_eyes or (transparent_background and add_align_eyes):
|
299 |
+
left_eyes_cordinates = get_pixel_cordinate_list(
|
300 |
+
align_larndmarks, mp_constants.LINE_LEFT_INNER_EYES, align_w, align_h
|
301 |
+
)
|
302 |
+
|
303 |
cv2.fillPoly(dst_mask, [np.int32(left_eyes_cordinates)], 255)
|
304 |
|
305 |
+
right_eyes_cordinates = get_pixel_cordinate_list(
|
306 |
+
align_larndmarks, mp_constants.LINE_RIGHT_INNER_EYES, align_w, align_h
|
307 |
+
)
|
308 |
cv2.fillPoly(dst_mask, [np.int32(right_eyes_cordinates)], 255)
|
309 |
|
310 |
+
if transparent_background and not add_align_eyes:
|
311 |
+
cv2.fillPoly(
|
312 |
+
transform_target_image,
|
313 |
+
[np.int32(left_eyes_cordinates)],
|
314 |
+
[0, 0, 0, 0],
|
315 |
+
)
|
316 |
+
cv2.fillPoly(
|
317 |
+
transform_target_image,
|
318 |
+
[np.int32(right_eyes_cordinates)],
|
319 |
+
[0, 0, 0, 0],
|
320 |
+
)
|
321 |
+
|
322 |
+
# cv2.imwrite("deb_transform_target_image.jpg",transform_target_image)
|
323 |
+
# cv2.imwrite("deb_dst_mask.jpg",dst_mask)
|
324 |
+
# cv2.imwrite("deb_applied_image.jpg",applied_image)
|
325 |
+
applied_image = blend_rgba_images_numba(
|
326 |
+
applied_image, transform_target_image, dst_mask
|
327 |
+
)
|
328 |
+
cv2.imwrite("deb_final_transform_target_image.jpg", transform_target_image)
|
329 |
|
330 |
return applied_image
|
331 |
|
332 |
|
333 |
+
def process_landmark_transform_pil(
|
334 |
+
pil_image,
|
335 |
+
pil_align_target_image,
|
336 |
+
innner_mouth,
|
337 |
+
innner_eyes,
|
338 |
+
color_matching=False,
|
339 |
+
transparent_background=False,
|
340 |
+
add_align_mouth=False,
|
341 |
+
add_align_eyes=False,
|
342 |
+
blur_size=0,
|
343 |
+
):
|
344 |
image = pil_to_bgr_image(pil_image)
|
345 |
align_target_image = pil_to_bgr_image(pil_align_target_image)
|
346 |
+
cv_result = process_landmark_transform(
|
347 |
+
image,
|
348 |
+
align_target_image,
|
349 |
+
innner_mouth,
|
350 |
+
innner_eyes,
|
351 |
+
color_matching,
|
352 |
+
transparent_background,
|
353 |
+
add_align_mouth,
|
354 |
+
add_align_eyes,
|
355 |
+
blur_size,
|
356 |
+
)
|
357 |
if transparent_background:
|
358 |
return Image.fromarray(cv2.cvtColor(cv_result, cv2.COLOR_BGRA2RGBA))
|
359 |
else:
|
360 |
return Image.fromarray(cv2.cvtColor(cv_result, cv2.COLOR_BGR2RGB))
|
361 |
|
362 |
+
|
363 |
if __name__ == "__main__":
|
364 |
+
# image = Image.open('examples/00002062.jpg')
|
365 |
+
# align_target = Image.open('examples/02316230.jpg')
|
366 |
+
image = cv2.imread("examples/02316230.jpg") # 元画像
|
367 |
+
align_target = cv2.imread("examples/00003245_00.jpg") # 目標画像
|
368 |
+
result_img = process_landmark_transform(image, align_target)
|
369 |
|
370 |
+
cv2.imshow("Transformed Image", result_img)
|
371 |
cv2.waitKey(0)
|
372 |
cv2.destroyAllWindows()
|
373 |
|
374 |
+
cv2.imwrite("align.png", result_img)
|