Akshat-1812 commited on
Commit
69363a4
·
1 Parent(s): f6c6181

First Commit

Browse files
20220804-16551659632113-all-images-Adam.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da173ad036b3c0d5358aa6729626c00435d383c7b9ba02798cc3dd5909fcebaf
3
+ size 23432380
German.jpg ADDED
app.py ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import requests
3
+ import tensorflow as tf
4
+ import tensorflow_hub as hub
5
+
6
+ path = '20220804-16551659632113-all-images-Adam.h5'
7
+ model = tf.keras.models.load_model(path,custom_objects={"KerasLayer":hub.KerasLayer})
8
+
9
+ labels = ['affenpinscher', 'afghan_hound', 'african_hunting_dog', 'airedale',
10
+ 'american_staffordshire_terrier', 'appenzeller',
11
+ 'australian_terrier', 'basenji', 'basset', 'beagle',
12
+ 'bedlington_terrier', 'bernese_mountain_dog',
13
+ 'black-and-tan_coonhound', 'blenheim_spaniel', 'bloodhound',
14
+ 'bluetick', 'border_collie', 'border_terrier', 'borzoi',
15
+ 'boston_bull', 'bouvier_des_flandres', 'boxer',
16
+ 'brabancon_griffon', 'briard', 'brittany_spaniel', 'bull_mastiff',
17
+ 'cairn', 'cardigan', 'chesapeake_bay_retriever', 'chihuahua',
18
+ 'chow', 'clumber', 'cocker_spaniel', 'collie',
19
+ 'curly-coated_retriever', 'dandie_dinmont', 'dhole', 'dingo',
20
+ 'doberman', 'english_foxhound', 'english_setter',
21
+ 'english_springer', 'entlebucher', 'eskimo_dog',
22
+ 'flat-coated_retriever', 'french_bulldog', 'german_shepherd',
23
+ 'german_short-haired_pointer', 'giant_schnauzer',
24
+ 'golden_retriever', 'gordon_setter', 'great_dane',
25
+ 'great_pyrenees', 'greater_swiss_mountain_dog', 'groenendael',
26
+ 'ibizan_hound', 'irish_setter', 'irish_terrier',
27
+ 'irish_water_spaniel', 'irish_wolfhound', 'italian_greyhound',
28
+ 'japanese_spaniel', 'keeshond', 'kelpie', 'kerry_blue_terrier',
29
+ 'komondor', 'kuvasz', 'labrador_retriever', 'lakeland_terrier',
30
+ 'leonberg', 'lhasa', 'malamute', 'malinois', 'maltese_dog',
31
+ 'mexican_hairless', 'miniature_pinscher', 'miniature_poodle',
32
+ 'miniature_schnauzer', 'newfoundland', 'norfolk_terrier',
33
+ 'norwegian_elkhound', 'norwich_terrier', 'old_english_sheepdog',
34
+ 'otterhound', 'papillon', 'pekinese', 'pembroke', 'pomeranian',
35
+ 'pug', 'redbone', 'rhodesian_ridgeback', 'rottweiler',
36
+ 'saint_bernard', 'saluki', 'samoyed', 'schipperke',
37
+ 'scotch_terrier', 'scottish_deerhound', 'sealyham_terrier',
38
+ 'shetland_sheepdog', 'shih-tzu', 'siberian_husky', 'silky_terrier',
39
+ 'soft-coated_wheaten_terrier', 'staffordshire_bullterrier',
40
+ 'standard_poodle', 'standard_schnauzer', 'sussex_spaniel',
41
+ 'tibetan_mastiff', 'tibetan_terrier', 'toy_poodle', 'toy_terrier',
42
+ 'vizsla', 'walker_hound', 'weimaraner', 'welsh_springer_spaniel',
43
+ 'west_highland_white_terrier', 'whippet',
44
+ 'wire-haired_fox_terrier', 'yorkshire_terrier']
45
+
46
+ # load the model
47
+ def predict_breed(image):
48
+
49
+
50
+ # reshape the input
51
+ image = image.reshape((-1, 224, 224, 3))
52
+
53
+ image = tf.image.convert_image_dtype(image, dtype=tf.float32)
54
+
55
+ image = tf.constant(image)
56
+
57
+ # prediction = model_1000_images.predict(image).flatten()
58
+ prediction = model.predict(image).flatten()
59
+
60
+ # return prediction labels
61
+ return {labels[i]: float(prediction[i]) for i in range(120)}
62
+
63
+ title = "Dog Vision"
64
+ description = "A Dog Breed Classifier trained on the MobileNetV2 Deep Learning Model result."
65
+
66
+ examples = ['German.jpg']
67
+
68
+ enable_queue=True
69
+
70
+ gr.Interface(
71
+ fn=predict_breed,
72
+ inputs=gr.inputs.Image(shape=(224, 224)),
73
+ outputs=gr.outputs.Label(num_top_classes=3),
74
+ title=title,
75
+ description=description,
76
+ examples=examples,
77
+ cache_examples=True,
78
+ examples_per_page=2,
79
+ enable_queue=enable_queue).launch()