import gradio as gr import requests import tensorflow as tf import tensorflow_hub as hub import cv2 import tf_keras as keras TF_USE_LEGACY_KERAS=1 path = '20220804-16551659632113-all-images-Adam.h5' #aks---------------- # Register custom objects custom_objects = {'KerasLayer': hub.KerasLayer} # Load the model with custom objects registered with tf.keras.utils.custom_object_scope(custom_objects): model = tf.keras.models.load_model(path) #aks end----------- # model = tf.keras.models.load_model((path),custom_objects={"KerasLayer":hub.KerasLayer}) labels = ['affenpinscher', 'afghan_hound', 'african_hunting_dog', 'airedale', 'american_staffordshire_terrier', 'appenzeller', 'australian_terrier', 'basenji', 'basset', 'beagle', 'bedlington_terrier', 'bernese_mountain_dog', 'black-and-tan_coonhound', 'blenheim_spaniel', 'bloodhound', 'bluetick', 'border_collie', 'border_terrier', 'borzoi', 'boston_bull', 'bouvier_des_flandres', 'boxer', 'brabancon_griffon', 'briard', 'brittany_spaniel', 'bull_mastiff', 'cairn', 'cardigan', 'chesapeake_bay_retriever', 'chihuahua', 'chow', 'clumber', 'cocker_spaniel', 'collie', 'curly-coated_retriever', 'dandie_dinmont', 'dhole', 'dingo', 'doberman', 'english_foxhound', 'english_setter', 'english_springer', 'entlebucher', 'eskimo_dog', 'flat-coated_retriever', 'french_bulldog', 'german_shepherd', 'german_short-haired_pointer', 'giant_schnauzer', 'golden_retriever', 'gordon_setter', 'great_dane', 'great_pyrenees', 'greater_swiss_mountain_dog', 'groenendael', 'ibizan_hound', 'irish_setter', 'irish_terrier', 'irish_water_spaniel', 'irish_wolfhound', 'italian_greyhound', 'japanese_spaniel', 'keeshond', 'kelpie', 'kerry_blue_terrier', 'komondor', 'kuvasz', 'labrador_retriever', 'lakeland_terrier', 'leonberg', 'lhasa', 'malamute', 'malinois', 'maltese_dog', 'mexican_hairless', 'miniature_pinscher', 'miniature_poodle', 'miniature_schnauzer', 'newfoundland', 'norfolk_terrier', 'norwegian_elkhound', 'norwich_terrier', 'old_english_sheepdog', 'otterhound', 'papillon', 'pekinese', 'pembroke', 'pomeranian', 'pug', 'redbone', 'rhodesian_ridgeback', 'rottweiler', 'saint_bernard', 'saluki', 'samoyed', 'schipperke', 'scotch_terrier', 'scottish_deerhound', 'sealyham_terrier', 'shetland_sheepdog', 'shih-tzu', 'siberian_husky', 'silky_terrier', 'soft-coated_wheaten_terrier', 'staffordshire_bullterrier', 'standard_poodle', 'standard_schnauzer', 'sussex_spaniel', 'tibetan_mastiff', 'tibetan_terrier', 'toy_poodle', 'toy_terrier', 'vizsla', 'walker_hound', 'weimaraner', 'welsh_springer_spaniel', 'west_highland_white_terrier', 'whippet', 'wire-haired_fox_terrier', 'yorkshire_terrier'] # load the model def predict_breed(image): ##---aks image = cv2.resize(image, (224, 224)) ##aks end # reshape the input image = image.reshape((-1, 224, 224, 3)) image = tf.image.convert_image_dtype(image, dtype=tf.float32) image = tf.constant(image) # prediction = model_1000_images.predict(image).flatten() prediction = model.predict(image).flatten() # return prediction labels return {labels[i]: float(prediction[i]) for i in range(120)} title = "Dog Vision" description = "A Dog Breed Classifier trained on the MobileNetV2 Deep Learning Model result." examples = ['German.jpg'] enable_queue=True gr.Interface( fn=predict_breed, inputs=gr.Image(), outputs=gr.Label(num_top_classes=3), # inputs=gr.inputs.Image(shape=(224, 224)), # outputs=gr.outputs.Label(num_top_classes=3), title=title, description=description, examples=examples, cache_examples=True, examples_per_page=2).launch(debug=True,enable_queue=enable_queue)