Spaces:
Running
Running
# Import necessary libraries | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import torch | |
# Load the tokenizer and model | |
tokenizer = AutoTokenizer.from_pretrained("chuanli11/Llama-3.2-3B-Instruct-uncensored") | |
model = AutoModelForCausalLM.from_pretrained("chuanli11/Llama-3.2-3B-Instruct-uncensored") | |
def generate_response(input_text): | |
# Encode the input text and generate response | |
inputs = tokenizer(input_text, return_tensors="pt") | |
outputs = model.generate(**inputs, max_length=150, do_sample=True, temperature=0.7, top_p=0.9) | |
# Decode the output to get the chatbot response | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return response | |
def chat(): | |
print("Chatbot: Hello! I'm here to assist you. Type 'exit' to end the conversation.") | |
while True: | |
user_input = input("You: ") | |
if user_input.lower() == "exit": | |
print("Chatbot: Goodbye!") | |
break | |
# Generate the response from the chatbot | |
response = generate_response(user_input) | |
print(f"Chatbot: {response}") | |
# Start the chat | |
if __name__ == "__main__": | |
chat() |