Spaces:
Sleeping
Sleeping
Akshayram1
commited on
Commit
β’
1beb2b7
1
Parent(s):
e4d4b3b
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,356 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from phi.agent import Agent
|
3 |
+
from phi.knowledge.pdf import PDFKnowledgeBase, PDFReader
|
4 |
+
from phi.vectordb.qdrant import Qdrant
|
5 |
+
from phi.tools.duckduckgo import DuckDuckGo
|
6 |
+
from phi.model.openai import OpenAIChat
|
7 |
+
from phi.embedder.openai import OpenAIEmbedder
|
8 |
+
import tempfile
|
9 |
+
import os
|
10 |
+
|
11 |
+
#initializing the session state variables
|
12 |
+
def init_session_state():
|
13 |
+
"""Initialize session state variables"""
|
14 |
+
if 'openai_api_key' not in st.session_state:
|
15 |
+
st.session_state.openai_api_key = None
|
16 |
+
if 'qdrant_api_key' not in st.session_state:
|
17 |
+
st.session_state.qdrant_api_key = None
|
18 |
+
if 'qdrant_url' not in st.session_state:
|
19 |
+
st.session_state.qdrant_url = None
|
20 |
+
if 'vector_db' not in st.session_state:
|
21 |
+
st.session_state.vector_db = None
|
22 |
+
if 'legal_team' not in st.session_state:
|
23 |
+
st.session_state.legal_team = None
|
24 |
+
if 'knowledge_base' not in st.session_state:
|
25 |
+
st.session_state.knowledge_base = None
|
26 |
+
|
27 |
+
def init_qdrant():
|
28 |
+
"""Initialize Qdrant vector database"""
|
29 |
+
if not st.session_state.qdrant_api_key:
|
30 |
+
raise ValueError("Qdrant API key not provided")
|
31 |
+
if not st.session_state.qdrant_url:
|
32 |
+
raise ValueError("Qdrant URL not provided")
|
33 |
+
|
34 |
+
return Qdrant(
|
35 |
+
collection="legal_knowledge",
|
36 |
+
url=st.session_state.qdrant_url,
|
37 |
+
api_key=st.session_state.qdrant_api_key,
|
38 |
+
https=True,
|
39 |
+
timeout=None,
|
40 |
+
distance="cosine"
|
41 |
+
)
|
42 |
+
|
43 |
+
def process_document(uploaded_file, vector_db: Qdrant):
|
44 |
+
"""Process document, create embeddings and store in Qdrant vector database"""
|
45 |
+
if not st.session_state.openai_api_key:
|
46 |
+
raise ValueError("OpenAI API key not provided")
|
47 |
+
|
48 |
+
os.environ['OPENAI_API_KEY'] = st.session_state.openai_api_key
|
49 |
+
|
50 |
+
with tempfile.TemporaryDirectory() as temp_dir:
|
51 |
+
|
52 |
+
temp_file_path = os.path.join(temp_dir, uploaded_file.name)
|
53 |
+
with open(temp_file_path, "wb") as f:
|
54 |
+
f.write(uploaded_file.getbuffer())
|
55 |
+
|
56 |
+
try:
|
57 |
+
|
58 |
+
embedder = OpenAIEmbedder(
|
59 |
+
model="text-embedding-3-small",
|
60 |
+
api_key=st.session_state.openai_api_key
|
61 |
+
)
|
62 |
+
|
63 |
+
# Creating knowledge base with explicit Qdrant configuration
|
64 |
+
knowledge_base = PDFKnowledgeBase(
|
65 |
+
path=temp_dir,
|
66 |
+
vector_db=vector_db,
|
67 |
+
reader=PDFReader(chunk=True),
|
68 |
+
embedder=embedder,
|
69 |
+
recreate_vector_db=True
|
70 |
+
)
|
71 |
+
knowledge_base.load()
|
72 |
+
return knowledge_base
|
73 |
+
except Exception as e:
|
74 |
+
raise Exception(f"Error processing document: {str(e)}")
|
75 |
+
|
76 |
+
def main():
|
77 |
+
st.set_page_config(page_title="Legal Document Analyzer", layout="wide")
|
78 |
+
init_session_state()
|
79 |
+
|
80 |
+
st.title("AI Legal Agent Team π¨ββοΈ")
|
81 |
+
|
82 |
+
with st.sidebar:
|
83 |
+
st.header("π API Configuration")
|
84 |
+
|
85 |
+
openai_key = st.text_input(
|
86 |
+
"OpenAI API Key",
|
87 |
+
type="password",
|
88 |
+
value=st.session_state.openai_api_key if st.session_state.openai_api_key else "",
|
89 |
+
help="Enter your OpenAI API key"
|
90 |
+
)
|
91 |
+
if openai_key:
|
92 |
+
st.session_state.openai_api_key = openai_key
|
93 |
+
|
94 |
+
qdrant_key = st.text_input(
|
95 |
+
"Qdrant API Key",
|
96 |
+
type="password",
|
97 |
+
value=st.session_state.qdrant_api_key if st.session_state.qdrant_api_key else "",
|
98 |
+
help="Enter your Qdrant API key"
|
99 |
+
)
|
100 |
+
if qdrant_key:
|
101 |
+
st.session_state.qdrant_api_key = qdrant_key
|
102 |
+
|
103 |
+
qdrant_url = st.text_input(
|
104 |
+
"Qdrant URL",
|
105 |
+
value=st.session_state.qdrant_url if st.session_state.qdrant_url else "https://f499085c-b4bf-4bda-a9a5-227f62a9ca20.us-west-2-0.aws.cloud.qdrant.io:6333",
|
106 |
+
help="Enter your Qdrant instance URL"
|
107 |
+
)
|
108 |
+
if qdrant_url:
|
109 |
+
st.session_state.qdrant_url = qdrant_url
|
110 |
+
|
111 |
+
if all([st.session_state.qdrant_api_key, st.session_state.qdrant_url]):
|
112 |
+
try:
|
113 |
+
if not st.session_state.vector_db:
|
114 |
+
st.session_state.vector_db = init_qdrant()
|
115 |
+
st.success("Successfully connected to Qdrant!")
|
116 |
+
except Exception as e:
|
117 |
+
st.error(f"Failed to connect to Qdrant: {str(e)}")
|
118 |
+
|
119 |
+
st.divider()
|
120 |
+
|
121 |
+
if all([st.session_state.openai_api_key, st.session_state.vector_db]):
|
122 |
+
st.header("π Document Upload")
|
123 |
+
uploaded_file = st.file_uploader("Upload Legal Document", type=['pdf'])
|
124 |
+
|
125 |
+
if uploaded_file:
|
126 |
+
with st.spinner("Processing document..."):
|
127 |
+
try:
|
128 |
+
knowledge_base = process_document(uploaded_file, st.session_state.vector_db)
|
129 |
+
st.session_state.knowledge_base = knowledge_base
|
130 |
+
|
131 |
+
# Initialize agents
|
132 |
+
legal_researcher = Agent(
|
133 |
+
name="Legal Researcher",
|
134 |
+
role="Legal research specialist",
|
135 |
+
model=OpenAIChat(model="gpt-4o"),
|
136 |
+
tools=[DuckDuckGo()],
|
137 |
+
knowledge=st.session_state.knowledge_base,
|
138 |
+
search_knowledge=True,
|
139 |
+
instructions=[
|
140 |
+
"Find and cite relevant legal cases and precedents",
|
141 |
+
"Provide detailed research summaries with sources",
|
142 |
+
"Reference specific sections from the uploaded document",
|
143 |
+
"Always search the knowledge base for relevant information"
|
144 |
+
],
|
145 |
+
show_tool_calls=True,
|
146 |
+
markdown=True
|
147 |
+
)
|
148 |
+
|
149 |
+
contract_analyst = Agent(
|
150 |
+
name="Contract Analyst",
|
151 |
+
role="Contract analysis specialist",
|
152 |
+
model=OpenAIChat(model="gpt-4o"),
|
153 |
+
knowledge=knowledge_base,
|
154 |
+
search_knowledge=True,
|
155 |
+
instructions=[
|
156 |
+
"Review contracts thoroughly",
|
157 |
+
"Identify key terms and potential issues",
|
158 |
+
"Reference specific clauses from the document"
|
159 |
+
],
|
160 |
+
markdown=True
|
161 |
+
)
|
162 |
+
|
163 |
+
legal_strategist = Agent(
|
164 |
+
name="Legal Strategist",
|
165 |
+
role="Legal strategy specialist",
|
166 |
+
model=OpenAIChat(model="gpt-4o"),
|
167 |
+
knowledge=knowledge_base,
|
168 |
+
search_knowledge=True,
|
169 |
+
instructions=[
|
170 |
+
"Develop comprehensive legal strategies",
|
171 |
+
"Provide actionable recommendations",
|
172 |
+
"Consider both risks and opportunities"
|
173 |
+
],
|
174 |
+
markdown=True
|
175 |
+
)
|
176 |
+
|
177 |
+
# Legal Agent Team
|
178 |
+
st.session_state.legal_team = Agent(
|
179 |
+
name="Legal Team Lead",
|
180 |
+
role="Legal team coordinator",
|
181 |
+
model=OpenAIChat(model="gpt-4o"),
|
182 |
+
team=[legal_researcher, contract_analyst, legal_strategist],
|
183 |
+
knowledge=st.session_state.knowledge_base,
|
184 |
+
search_knowledge=True,
|
185 |
+
instructions=[
|
186 |
+
"Coordinate analysis between team members",
|
187 |
+
"Provide comprehensive responses",
|
188 |
+
"Ensure all recommendations are properly sourced",
|
189 |
+
"Reference specific parts of the uploaded document",
|
190 |
+
"Always search the knowledge base before delegating tasks"
|
191 |
+
],
|
192 |
+
show_tool_calls=True,
|
193 |
+
markdown=True
|
194 |
+
)
|
195 |
+
|
196 |
+
st.success("β
Document processed and team initialized!")
|
197 |
+
|
198 |
+
except Exception as e:
|
199 |
+
st.error(f"Error processing document: {str(e)}")
|
200 |
+
|
201 |
+
st.divider()
|
202 |
+
st.header("π Analysis Options")
|
203 |
+
analysis_type = st.selectbox(
|
204 |
+
"Select Analysis Type",
|
205 |
+
[
|
206 |
+
"Contract Review",
|
207 |
+
"Legal Research",
|
208 |
+
"Risk Assessment",
|
209 |
+
"Compliance Check",
|
210 |
+
"Custom Query"
|
211 |
+
]
|
212 |
+
)
|
213 |
+
else:
|
214 |
+
st.warning("Please configure all API credentials to proceed")
|
215 |
+
|
216 |
+
# Main content area
|
217 |
+
if not all([st.session_state.openai_api_key, st.session_state.vector_db]):
|
218 |
+
st.info("π Please configure your API credentials in the sidebar to begin")
|
219 |
+
elif not uploaded_file:
|
220 |
+
st.info("π Please upload a legal document to begin analysis")
|
221 |
+
elif st.session_state.legal_team:
|
222 |
+
# Create a dictionary for analysis type icons
|
223 |
+
analysis_icons = {
|
224 |
+
"Contract Review": "π",
|
225 |
+
"Legal Research": "π",
|
226 |
+
"Risk Assessment": "β οΈ",
|
227 |
+
"Compliance Check": "β
",
|
228 |
+
"Custom Query": "π"
|
229 |
+
}
|
230 |
+
|
231 |
+
# Dynamic header with icon
|
232 |
+
st.header(f"{analysis_icons[analysis_type]} {analysis_type} Analysis")
|
233 |
+
|
234 |
+
analysis_configs = {
|
235 |
+
"Contract Review": {
|
236 |
+
"query": "Review this contract and identify key terms, obligations, and potential issues.",
|
237 |
+
"agents": ["Contract Analyst"],
|
238 |
+
"description": "Detailed contract analysis focusing on terms and obligations"
|
239 |
+
},
|
240 |
+
"Legal Research": {
|
241 |
+
"query": "Research relevant cases and precedents related to this document.",
|
242 |
+
"agents": ["Legal Researcher"],
|
243 |
+
"description": "Research on relevant legal cases and precedents"
|
244 |
+
},
|
245 |
+
"Risk Assessment": {
|
246 |
+
"query": "Analyze potential legal risks and liabilities in this document.",
|
247 |
+
"agents": ["Contract Analyst", "Legal Strategist"],
|
248 |
+
"description": "Combined risk analysis and strategic assessment"
|
249 |
+
},
|
250 |
+
"Compliance Check": {
|
251 |
+
"query": "Check this document for regulatory compliance issues.",
|
252 |
+
"agents": ["Legal Researcher", "Contract Analyst", "Legal Strategist"],
|
253 |
+
"description": "Comprehensive compliance analysis"
|
254 |
+
},
|
255 |
+
"Custom Query": {
|
256 |
+
"query": None,
|
257 |
+
"agents": ["Legal Researcher", "Contract Analyst", "Legal Strategist"],
|
258 |
+
"description": "Custom analysis using all available agents"
|
259 |
+
}
|
260 |
+
}
|
261 |
+
|
262 |
+
st.info(f"π {analysis_configs[analysis_type]['description']}")
|
263 |
+
st.write(f"π€ Active Legal AI Agents: {', '.join(analysis_configs[analysis_type]['agents'])}") #dictionary!!
|
264 |
+
|
265 |
+
# Replace the existing user_query section with this:
|
266 |
+
if analysis_type == "Custom Query":
|
267 |
+
user_query = st.text_area(
|
268 |
+
"Enter your specific query:",
|
269 |
+
help="Add any specific questions or points you want to analyze"
|
270 |
+
)
|
271 |
+
else:
|
272 |
+
user_query = None # Set to None for non-custom queries
|
273 |
+
|
274 |
+
|
275 |
+
if st.button("Analyze"):
|
276 |
+
if analysis_type == "Custom Query" and not user_query:
|
277 |
+
st.warning("Please enter a query")
|
278 |
+
else:
|
279 |
+
with st.spinner("Analyzing document..."):
|
280 |
+
try:
|
281 |
+
# Ensure OpenAI API key is set
|
282 |
+
os.environ['OPENAI_API_KEY'] = st.session_state.openai_api_key
|
283 |
+
|
284 |
+
# Combine predefined and user queries
|
285 |
+
if analysis_type != "Custom Query":
|
286 |
+
combined_query = f"""
|
287 |
+
Using the uploaded document as reference:
|
288 |
+
|
289 |
+
Primary Analysis Task: {analysis_configs[analysis_type]['query']}
|
290 |
+
Focus Areas: {', '.join(analysis_configs[analysis_type]['agents'])}
|
291 |
+
|
292 |
+
Please search the knowledge base and provide specific references from the document.
|
293 |
+
"""
|
294 |
+
else:
|
295 |
+
combined_query = f"""
|
296 |
+
Using the uploaded document as reference:
|
297 |
+
|
298 |
+
{user_query}
|
299 |
+
|
300 |
+
Please search the knowledge base and provide specific references from the document.
|
301 |
+
Focus Areas: {', '.join(analysis_configs[analysis_type]['agents'])}
|
302 |
+
"""
|
303 |
+
|
304 |
+
response = st.session_state.legal_team.run(combined_query)
|
305 |
+
|
306 |
+
# Display results in tabs
|
307 |
+
tabs = st.tabs(["Analysis", "Key Points", "Recommendations"])
|
308 |
+
|
309 |
+
with tabs[0]:
|
310 |
+
st.markdown("### Detailed Analysis")
|
311 |
+
if response.content:
|
312 |
+
st.markdown(response.content)
|
313 |
+
else:
|
314 |
+
for message in response.messages:
|
315 |
+
if message.role == 'assistant' and message.content:
|
316 |
+
st.markdown(message.content)
|
317 |
+
|
318 |
+
with tabs[1]:
|
319 |
+
st.markdown("### Key Points")
|
320 |
+
key_points_response = st.session_state.legal_team.run(
|
321 |
+
f"""Based on this previous analysis:
|
322 |
+
{response.content}
|
323 |
+
|
324 |
+
Please summarize the key points in bullet points.
|
325 |
+
Focus on insights from: {', '.join(analysis_configs[analysis_type]['agents'])}"""
|
326 |
+
)
|
327 |
+
if key_points_response.content:
|
328 |
+
st.markdown(key_points_response.content)
|
329 |
+
else:
|
330 |
+
for message in key_points_response.messages:
|
331 |
+
if message.role == 'assistant' and message.content:
|
332 |
+
st.markdown(message.content)
|
333 |
+
|
334 |
+
with tabs[2]:
|
335 |
+
st.markdown("### Recommendations")
|
336 |
+
recommendations_response = st.session_state.legal_team.run(
|
337 |
+
f"""Based on this previous analysis:
|
338 |
+
{response.content}
|
339 |
+
|
340 |
+
What are your key recommendations based on the analysis, the best course of action?
|
341 |
+
Provide specific recommendations from: {', '.join(analysis_configs[analysis_type]['agents'])}"""
|
342 |
+
)
|
343 |
+
if recommendations_response.content:
|
344 |
+
st.markdown(recommendations_response.content)
|
345 |
+
else:
|
346 |
+
for message in recommendations_response.messages:
|
347 |
+
if message.role == 'assistant' and message.content:
|
348 |
+
st.markdown(message.content)
|
349 |
+
|
350 |
+
except Exception as e:
|
351 |
+
st.error(f"Error during analysis: {str(e)}")
|
352 |
+
else:
|
353 |
+
st.info("Please upload a legal document to begin analysis")
|
354 |
+
|
355 |
+
if __name__ == "__main__":
|
356 |
+
main()
|