Spaces:
Build error
Build error
# Import necessary libraries | |
import streamlit as st | |
import nltk | |
from gensim.models.doc2vec import Doc2Vec, TaggedDocument | |
from nltk.tokenize import word_tokenize | |
import PyPDF2 | |
import pandas as pd | |
import re | |
import matplotlib.pyplot as plt | |
import seaborn as sns | |
import spacy | |
# Download necessary NLTK data | |
nltk.download('punkt') | |
# Define regular expressions for pattern matching | |
float_regex = re.compile(r'^\d{1,2}(\.\d{1,2})?$') | |
email_pattern = r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b' | |
float_digit_regex = re.compile(r'^\d{10}$') | |
email_with_phone_regex = re.compile(r'(\d{10}).|.(\d{10})') | |
# Function to extract text from a PDF file | |
def extract_text_from_pdf(pdf_file): | |
pdf_reader = PyPDF2.PdfReader(pdf_file) | |
text = "" | |
for page_num in range(len(pdf_reader.pages)): | |
text += pdf_reader.pages[page_num].extract_text() | |
return text | |
# Function to tokenize text using the NLP model | |
def tokenize_text(text, nlp_model): | |
doc = nlp_model(text, disable=["tagger", "parser"]) | |
tokens = [(token.text.lower(), token.label_) for token in doc.ents] | |
return tokens | |
# Function to extract CGPA from a resume | |
def extract_cgpa(resume_text): | |
cgpa_pattern = r'\b(?:CGPA|GPA|C\.G\.PA|Cumulative GPA)\s*:?[\s-]([0-9]+(?:\.[0-9]+)?)\b|\b([0-9]+(?:\.[0-9]+)?)\s(?:CGPA|GPA)\b' | |
match = re.search(cgpa_pattern, resume_text, re.IGNORECASE) | |
if match: | |
cgpa = match.group(1) if match.group(1) else match.group(2) | |
return float(cgpa) | |
else: | |
return None | |
# Function to extract skills from a resume | |
def extract_skills(text, skills_keywords): | |
skills = [skill.lower() for skill in skills_keywords if re.search(r'\b' + re.escape(skill.lower()) + r'\b', text.lower())] | |
return skills | |
# Function to preprocess text | |
def preprocess_text(text): | |
return word_tokenize(text.lower()) | |
# Function to train a Doc2Vec model | |
def train_doc2vec_model(documents): | |
model = Doc2Vec(vector_size=20, min_count=2, epochs=50) | |
model.build_vocab(documents) | |
model.train(documents, total_examples=model.corpus_count, epochs=model.epochs) | |
return model | |
# Function to calculate similarity between two texts | |
def calculate_similarity(model, text1, text2): | |
vector1 = model.infer_vector(preprocess_text(text1)) | |
vector2 = model.infer_vector(preprocess_text(text2)) | |
return model.dv.cosine_similarities(vector1, [vector2])[0] | |
# Function to calculate accuracy | |
def accuracy_calculation(true_positives, false_positives, false_negatives): | |
total = true_positives + false_positives + false_negatives | |
accuracy = true_positives / total if total != 0 else 0 | |
return accuracy | |
# Streamlit Frontend | |
st.markdown("# Resume Matching Tool ππ") | |
st.markdown("An application to match resumes with a job description.") | |
# Sidebar - File Upload for Resumes | |
st.sidebar.markdown("## Upload Resumes PDF") | |
resumes_files = st.sidebar.file_uploader("Upload Resumes PDF", type=["pdf"], accept_multiple_files=True) | |
if resumes_files: | |
# Sidebar - File Upload for Job Descriptions | |
st.sidebar.markdown("## Upload Job Description PDF") | |
job_descriptions_file = st.sidebar.file_uploader("Upload Job Description PDF", type=["pdf"]) | |
if job_descriptions_file: | |
# Load the pre-trained NLP model | |
nlp_model_path = "en_Resume_Matching_Keywords" | |
nlp = spacy.load(nlp_model_path) | |
# Backend Processing | |
job_description_text = extract_text_from_pdf(job_descriptions_file) | |
resumes_texts = [extract_text_from_pdf(resume_file) for resume_file in resumes_files] | |
job_description_text = extract_text_from_pdf(job_descriptions_file) | |
job_description_tokens = tokenize_text(job_description_text, nlp) | |
# Initialize counters | |
overall_skill_matches = 0 | |
overall_qualification_matches = 0 | |
# Create a list to store individual results | |
results_list = [] | |
job_skills = set() | |
job_qualifications = set() | |
for job_token, job_label in job_description_tokens: | |
if job_label == 'QUALIFICATION': | |
job_qualifications.add(job_token.replace('\n', ' ')) | |
elif job_label == 'SKILLS': | |
job_skills.add(job_token.replace('\n', ' ')) | |
job_skills_number = len(job_skills) | |
job_qualifications_number = len(job_qualifications) | |
# Lists to store counts of matched skills for all resumes | |
skills_counts_all_resumes = [] | |
# Iterate over all uploaded resumes | |
for uploaded_resume in resumes_files: | |
resume_text = extract_text_from_pdf(uploaded_resume) | |
resume_tokens = tokenize_text(resume_text, nlp) | |
# Initialize counters for individual resume | |
skillMatch = 0 | |
qualificationMatch = 0 | |
cgpa = "" | |
# Lists to store matched skills and qualifications for each resume | |
matched_skills = set() | |
matched_qualifications = set() | |
email = set() | |
phone = set() | |
name = set() | |
# Compare the tokens in the resume with the job description | |
for resume_token, resume_label in resume_tokens: | |
for job_token, job_label in job_description_tokens: | |
if resume_token.lower().replace('\n', ' ') == job_token.lower().replace('\n', ' '): | |
if resume_label == 'SKILLS': | |
matched_skills.add(resume_token.replace('\n', ' ')) | |
elif resume_label == 'QUALIFICATION': | |
matched_qualifications.add(resume_token.replace('\n', ' ')) | |
elif resume_label == 'PHONE' and bool(float_digit_regex.match(resume_token)): | |
phone.add(resume_token) | |
elif resume_label == 'QUALIFICATION': | |
matched_qualifications.add(resume_token.replace('\n', ' ')) | |
skillMatch = len(matched_skills) | |
qualificationMatch = len(matched_qualifications) | |
# Convert the list of emails to a set | |
email_set = set(re.findall(email_pattern, resume_text.replace('\n', ' '))) | |
email.update(email_set) | |
numberphone="" | |
for email_str in email: | |
numberphone = email_with_phone_regex.search(email_str) | |
if numberphone: | |
email.remove(email_str) | |
val=numberphone.group(1) or numberphone.group(2) | |
phone.add(val) | |
email.add(email_str.strip(val)) | |
# Increment overall counters based on matches | |
overall_skill_matches += skillMatch | |
overall_qualification_matches += qualificationMatch | |
# Add count of matched skills for this resume to the list | |
skills_counts_all_resumes.append([resume_text.count(skill.lower()) for skill in job_skills]) | |
# Create a dictionary for the current resume and append to the results list | |
result_dict = { | |
"Resume": uploaded_resume.name, | |
"Similarity Score": (skillMatch/job_skills_number)*100, | |
"Skill Matches": skillMatch, | |
"Matched Skills": matched_skills, | |
"CGPA": extract_cgpa(resume_text), | |
"Email": email, | |
"Phone": phone, | |
"Qualification Matches": qualificationMatch, | |
"Matched Qualifications": matched_qualifications | |
} | |
results_list.append(result_dict) | |
# Display overall matches | |
st.subheader("Overall Matches") | |
st.write(f"Total Skill Matches: {overall_skill_matches}") | |
st.write(f"Total Qualification Matches: {overall_qualification_matches}") | |
st.write(f"Job Qualifications: {job_qualifications}") | |
st.write(f"Job Skills: {job_skills}") | |
# Display individual results in a table | |
results_df = pd.DataFrame(results_list) | |
st.subheader("Individual Results") | |
st.dataframe(results_df) | |
tagged_resumes = [TaggedDocument(words=preprocess_text(text), tags=[str(i)]) for i, text in enumerate(resumes_texts)] | |
model_resumes = train_doc2vec_model(tagged_resumes) | |
st.subheader("\nHeatmap:") | |
# Get skills keywords from user input | |
skills_keywords_input = st.text_input("Enter skills keywords separated by commas (e.g., python, java, machine learning):") | |
skills_keywords = [skill.strip() for skill in skills_keywords_input.split(',') if skill.strip()] | |
if skills_keywords: | |
# Calculate the similarity score between each skill keyword and the resume text | |
skills_similarity_scores = [] | |
for resume_text in resumes_texts: | |
resume_text_similarity_scores = [] | |
for skill in skills_keywords: | |
similarity_score = calculate_similarity(model_resumes, resume_text, skill) | |
resume_text_similarity_scores.append(similarity_score) | |
skills_similarity_scores.append(resume_text_similarity_scores) | |
# Create a DataFrame with the similarity scores and set the index to the names of the PDFs | |
skills_similarity_df = pd.DataFrame(skills_similarity_scores, columns=skills_keywords, index=[resume_file.name for resume_file in resumes_files]) | |
# Plot the heatmap | |
fig, ax = plt.subplots(figsize=(12, 8)) | |
sns.heatmap(skills_similarity_df, cmap='YlGnBu', annot=True, fmt=".2f", ax=ax) | |
ax.set_title('Heatmap for Skills Similarity') | |
ax.set_xlabel('Skills') | |
ax.set_ylabel('Resumes') | |
# Rotate the y-axis labels for better readability | |
plt.yticks(rotation=0) | |
# Display the Matplotlib figure using st.pyplot() | |
st.pyplot(fig) | |
else: | |
st.write("Please enter at least one skill keyword.") | |
else: | |
st.warning("Please upload the Job Description PDF to proceed.") | |
else: | |
st.warning("Please upload Resumes PDF to proceed.") |