Spaces:
Sleeping
Sleeping
import os | |
from dotenv import load_dotenv | |
from langchain.document_loaders import PyPDFLoader | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.schema import Document | |
from langchain.prompts import PromptTemplate | |
from langchain.vectorstores import Neo4jVector | |
from langchain.chat_models import ChatOpenAI | |
from langchain.embeddings import OpenAIEmbeddings | |
from langchain.graphs import Neo4jGraph | |
from langchain_experimental.graph_transformers import LLMGraphTransformer | |
from langchain.chains.graph_qa.cypher import GraphCypherQAChain | |
import streamlit as st | |
import tempfile | |
from neo4j import GraphDatabase | |
def main(): | |
st.set_page_config( | |
layout="wide", | |
page_title="Graphy v1", | |
page_icon=":graph:" | |
) | |
st.sidebar.image('logo.png', use_column_width=True) | |
with st.sidebar.expander("Expand Me"): | |
st.markdown(""" | |
This application allows you to upload a PDF file, extract its content into a Neo4j graph database, and perform queries using natural language. | |
It leverages LangChain and OpenAI's GPT models to generate Cypher queries that interact with the Neo4j database in real-time. | |
""") | |
st.title("Graphy: Realtime GraphRAG App") | |
load_dotenv() | |
# Set OpenAI API key | |
if 'OPENAI_API_KEY' not in st.session_state: | |
st.sidebar.subheader("OpenAI API Key") | |
openai_api_key = st.sidebar.text_input("Enter your OpenAI API Key:", type='password') | |
if openai_api_key: | |
os.environ['OPENAI_API_KEY'] = openai_api_key | |
st.session_state['OPENAI_API_KEY'] = openai_api_key | |
st.sidebar.success("OpenAI API Key set successfully.") | |
embeddings = OpenAIEmbeddings() | |
llm = ChatOpenAI(model_name="gpt-4o") # Use model that supports function calling | |
st.session_state['embeddings'] = embeddings | |
st.session_state['llm'] = llm | |
else: | |
embeddings = st.session_state['embeddings'] | |
llm = st.session_state['llm'] | |
# Initialize variables | |
neo4j_url = None | |
neo4j_username = None | |
neo4j_password = None | |
graph = None | |
# Set Neo4j connection details | |
if 'neo4j_connected' not in st.session_state: | |
st.sidebar.subheader("Connect to Neo4j Database") | |
neo4j_url = st.sidebar.text_input("Neo4j URL:", value="neo4j+s://<your-neo4j-url>") | |
neo4j_username = st.sidebar.text_input("Neo4j Username:", value="neo4j") | |
neo4j_password = st.sidebar.text_input("Neo4j Password:", type='password') | |
connect_button = st.sidebar.button("Connect") | |
if connect_button and neo4j_password: | |
try: | |
graph = Neo4jGraph( | |
url=neo4j_url, | |
username=neo4j_username, | |
password=neo4j_password | |
) | |
st.session_state['graph'] = graph | |
st.session_state['neo4j_connected'] = True | |
# Store connection parameters for later use | |
st.session_state['neo4j_url'] = neo4j_url | |
st.session_state['neo4j_username'] = neo4j_username | |
st.session_state['neo4j_password'] = neo4j_password | |
st.sidebar.success("Connected to Neo4j database.") | |
except Exception as e: | |
st.error(f"Failed to connect to Neo4j: {e}") | |
else: | |
graph = st.session_state['graph'] | |
neo4j_url = st.session_state['neo4j_url'] | |
neo4j_username = st.session_state['neo4j_username'] | |
neo4j_password = st.session_state['neo4j_password'] | |
# Ensure that the Neo4j connection is established before proceeding | |
if graph is not None: | |
# File uploader | |
uploaded_file = st.file_uploader("Please select a PDF file.", type="pdf") | |
if uploaded_file is not None and 'qa' not in st.session_state: | |
with st.spinner("Processing the PDF..."): | |
# Save uploaded file to temporary file | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmp_file: | |
tmp_file.write(uploaded_file.read()) | |
tmp_file_path = tmp_file.name | |
# Load and split the PDF | |
loader = PyPDFLoader(tmp_file_path) | |
pages = loader.load_and_split() | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=200, chunk_overlap=40) | |
docs = text_splitter.split_documents(pages) | |
lc_docs = [] | |
for doc in docs: | |
lc_docs.append(Document(page_content=doc.page_content.replace("\n", ""), | |
metadata={'source': uploaded_file.name})) | |
# Clear the graph database | |
cypher = """ | |
MATCH (n) | |
DETACH DELETE n; | |
""" | |
graph.query(cypher) | |
# Define allowed nodes and relationships | |
allowed_nodes = ["Patient", "Disease", "Medication", "Test", "Symptom", "Doctor"] | |
allowed_relationships = ["HAS_DISEASE", "TAKES_MEDICATION", "UNDERWENT_TEST", "HAS_SYMPTOM", "TREATED_BY"] | |
# Transform documents into graph documents | |
transformer = LLMGraphTransformer( | |
llm=llm, | |
allowed_nodes=allowed_nodes, | |
allowed_relationships=allowed_relationships, | |
node_properties=False, | |
relationship_properties=False | |
) | |
graph_documents = transformer.convert_to_graph_documents(lc_docs) | |
graph.add_graph_documents(graph_documents, include_source=True) | |
# Use the stored connection parameters | |
index = Neo4jVector.from_existing_graph( | |
embedding=embeddings, | |
url=neo4j_url, | |
username=neo4j_username, | |
password=neo4j_password, | |
database="neo4j", | |
node_label="Patient", # Adjust node_label as needed | |
text_node_properties=["id", "text"], | |
embedding_node_property="embedding", | |
index_name="vector_index", | |
keyword_index_name="entity_index", | |
search_type="hybrid" | |
) | |
st.success(f"{uploaded_file.name} preparation is complete.") | |
# Retrieve the graph schema | |
schema = graph.get_schema | |
# Set up the QA chain | |
template = """ | |
Task: Generate a Cypher statement to query the graph database. | |
Instructions: | |
Use only relationship types and properties provided in schema. | |
Do not use other relationship types or properties that are not provided. | |
schema: | |
{schema} | |
Note: Do not include explanations or apologies in your answers. | |
Do not answer questions that ask anything other than creating Cypher statements. | |
Do not include any text other than generated Cypher statements. | |
Question: {question}""" | |
question_prompt = PromptTemplate( | |
template=template, | |
input_variables=["schema", "question"] | |
) | |
qa = GraphCypherQAChain.from_llm( | |
llm=llm, | |
graph=graph, | |
cypher_prompt=question_prompt, | |
verbose=True, | |
allow_dangerous_requests=True | |
) | |
st.session_state['qa'] = qa | |
else: | |
st.warning("Please connect to the Neo4j database before you can upload a PDF.") | |
if 'qa' in st.session_state: | |
st.subheader("Ask a Question") | |
with st.form(key='question_form'): | |
question = st.text_input("Enter your question:") | |
submit_button = st.form_submit_button(label='Submit') | |
if submit_button and question: | |
with st.spinner("Generating answer..."): | |
res = st.session_state['qa'].invoke({"query": question}) | |
st.write("\n**Answer:**\n" + res['result']) | |
if __name__ == "__main__": | |
main() | |