Spaces:
Running
Running
import streamlit as st | |
from smolagents.agents import ToolCallingAgent | |
from smolagents import tool, LiteLLMModel | |
from typing import Optional | |
import cv2 | |
import pytesseract | |
from PIL import Image | |
import io | |
# Define the LiteLLMModel | |
model = LiteLLMModel(model_id="gpt-4o") | |
def extract_components(image_data: bytes) -> str: | |
""" | |
Extract components from a web design image. | |
Args: | |
image_data: The image data in bytes. | |
Returns: | |
A string describing the components found in the image. | |
""" | |
image = Image.open(io.BytesIO(image_data)) | |
gray = cv2.cvtColor(np.array(image), cv2.COLOR_BGR2GRAY) | |
components = pytesseract.image_to_string(gray) | |
return components | |
def generate_code(components: str) -> str: | |
""" | |
Generate code for the given components. | |
Args: | |
components: A string describing the components. | |
Returns: | |
The generated code for the components. | |
""" | |
# This is a placeholder implementation. You can replace it with actual code generation logic. | |
return f"Generated code for components: {components}" | |
# Define the ToolCallingAgent | |
agent = ToolCallingAgent(tools=[extract_components, generate_code], model=model) | |
# Streamlit app title | |
st.title("Web Design Component Extractor") | |
# File uploader for the web design image | |
uploaded_file = st.file_uploader("Upload a web design image", type=["png", "jpg", "jpeg"]) | |
# Button to run the agent | |
if st.button("Extract and Generate Code"): | |
if uploaded_file is not None: | |
image_data = uploaded_file.read() | |
components = agent.run("extract_components", image_data=image_data) | |
code = agent.run("generate_code", components=components) | |
st.write("Extracted Components:", components) | |
st.write("Generated Code:", code) | |
else: | |
st.write("Please upload an image.") |