Akshit-77 commited on
Commit
187a6d3
·
verified ·
1 Parent(s): ff9ced6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +299 -49
app.py CHANGED
@@ -1,64 +1,314 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
 
 
 
 
 
 
3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
 
 
 
 
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
 
26
- messages.append({"role": "user", "content": message})
 
 
 
 
27
 
28
- response = ""
 
 
 
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
 
39
- response += token
40
- yield response
 
 
 
41
 
 
 
 
 
 
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61
 
 
 
 
 
 
 
 
62
 
 
63
  if __name__ == "__main__":
64
- demo.launch()
 
1
  import gradio as gr
2
+ import torch
3
+ import os
4
+ from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
5
+ from sentence_transformers import SentenceTransformer
6
+ from sklearn.metrics.pairwise import cosine_similarity
7
+ import yfinance as yf
8
+ from datetime import datetime
9
+ from huggingface_hub import login
10
 
11
+ # Get Hugging Face token from environment variables
12
+ hf_token = os.environ.get("HF_TOKEN")
13
+ if hf_token:
14
+ # Login to Hugging Face
15
+ login(token=hf_token)
16
+ print("Successfully logged in to Hugging Face")
17
+ else:
18
+ print("WARNING: HF_TOKEN not found in environment variables. You may face access issues for gated models.")
19
+
20
+ # Load the Chatbot Model and Tokenizer
21
+ model_name = "Akshit-77/llama-3.2-3b-chatbot"
22
+
23
+ # Try to use local cache if already downloaded, otherwise load with auth token
24
+ try:
25
+ tokenizer = AutoTokenizer.from_pretrained(model_name, token=hf_token)
26
+ except Exception as e:
27
+ print(f"Error loading tokenizer: {e}")
28
+ raise
29
+
30
+ # Configure quantization for memory efficiency
31
+ bnb_config = BitsAndBytesConfig(
32
+ load_in_4bit=True,
33
+ bnb_4bit_use_double_quant=True,
34
+ bnb_4bit_quant_type="fp4",
35
+ bnb_4bit_compute_dtype="float16"
36
+ )
37
+
38
+ # Load model with quantization and auth token
39
+ try:
40
+ model = AutoModelForCausalLM.from_pretrained(
41
+ model_name,
42
+ quantization_config=bnb_config,
43
+ device_map="auto",
44
+ token=hf_token
45
+ )
46
+ print("Model loaded successfully")
47
+ except Exception as e:
48
+ print(f"Error loading model: {e}")
49
+ raise
50
+
51
+ # CSS for Chatbot UI
52
+ css = """
53
+ #chatbot {
54
+ font-family: Arial, sans-serif;
55
+ background-color: #e5ddd5;
56
+ }
57
+ .message {
58
+ padding: 10px 15px;
59
+ border-radius: 7.5px;
60
+ margin: 5px 0;
61
+ max-width: 75%;
62
+ position: relative;
63
+ }
64
+ .user-message {
65
+ background: #dcf8c6;
66
+ margin-left: auto;
67
+ margin-right: 10px;
68
+ }
69
+ .bot-message {
70
+ background: white;
71
+ margin-left: 10px;
72
+ }
73
+ .timestamp {
74
+ font-size: 0.7em;
75
+ color: #667781;
76
+ float: right;
77
+ margin-left: 10px;
78
+ margin-top: 3px;
79
+ }
80
  """
 
 
 
81
 
82
+ class StockDataRetriever:
83
+ def __init__(self):
84
+ self.stock_mapping = {
85
+ # Existing mappings
86
+ 'RELIANCE': 'RELIANCE.NS',
87
+ 'TCS': 'TCS.NS',
88
+ 'HDFCBANK': 'HDFCBANK.NS',
89
+ 'INFY': 'INFY.NS',
90
+ 'ICICIBANK': 'ICICIBANK.NS',
91
 
92
+ # Expanded Mappings
93
+ 'RELIANCE-INDUSTRIES': 'RELIANCE.NS',
94
+ 'HDFC': 'HDFC.NS',
95
+ 'ONGC': 'ONGC.NS',
96
+ 'INDIAN-OIL-CORPORATION': 'IOC.NS',
97
+ 'ADANI-GROUP': 'ADANIENT.NS', # Using Adani Enterprises as a representative
 
 
 
98
 
99
+ 'HERO-MOTOCORP': 'HEROMOTOCO.NS',
100
+ 'ASIAN-PAINTS': 'ASIANPAINT.NS',
101
+ 'EICHER-MOTORS': 'EICHERMOT.NS',
102
+ 'ITC': 'ITC.NS',
103
+ 'TATA-STEEL': 'TATASTEEL.NS',
104
 
105
+ 'SHRIRAM-TRANSPORT-FINANCE': 'SHRIRAMFIN.NS',
106
+ 'DR-REDDYS-LABORATORIES': 'DRREDDY.NS',
107
+ 'INFOSYS': 'INFY.NS',
108
+ 'SUN-PHARMA': 'SUNPHARMA.NS',
109
+ 'TATA-CONSULTANCY-SERVICES': 'TCS.NS',
110
 
111
+ 'MARUTI-SUZUKI': 'MARUTI.NS',
112
+ 'HCL-TECHNOLOGIES': 'HCLTECH.NS',
113
+ 'COAL-INDIA': 'COALINDIA.NS',
114
+ 'LTI-MINDTREE': 'MINDTREE.NS',
115
+ 'HDFC-LIFE': 'HDFCLIFE.NS',
116
 
117
+ 'BAJAJ-AUTO': 'BAJAJ-AUTO.NS',
118
+ 'BRITANNIA-INDUSTRIES': 'BRITANNIA.NS',
119
+ 'HINDALCO-INDUSTRIES': 'HINDALCO.NS',
120
+ 'LARSEN-AND-TOUBRO': 'LT.NS',
121
+ 'TATA-CONSUMER-PRODUCTS': 'TATACONSUM.NS',
 
 
 
122
 
123
+ 'WIPRO': 'WIPRO.NS',
124
+ 'TITAN': 'TITAN.NS',
125
+ 'BAJAJ-FINANCE': 'BAJFINANCE.NS',
126
+ 'JSW-STEEL': 'JSWSTEEL.NS',
127
+ 'ICICI-BANK': 'ICICIBANK.NS',
128
 
129
+ 'INDUSIND-BANK': 'INDUSINDBK.NS',
130
+ 'BHARTI-AIRTEL': 'BHARTIARTL.NS',
131
+ 'DIVIS-LABORATORIES': 'DIVISLAB.NS',
132
+ 'SBI-LIFE-INSURANCE': 'SBILIFE.NS',
133
+ 'BAJAJ-FINSERV': 'BAJAJFINSV.NS',
134
 
135
+ 'CIPLA': 'CIPLA.NS',
136
+ 'GRASIM-INDUSTRIES': 'GRASIM.NS',
137
+ 'HINDUSTAN-UNILEVER': 'HINDUNILVR.NS',
138
+ 'MAHINDRA-AND-MAHINDRA': 'M&M.NS',
139
+ 'TATA-MOTORS': 'TATAMOTORS.NS',
140
+
141
+ 'APOLLO-HOSPITALS-ENTERPRISES': 'APOLLOHOSP.NS',
142
+ 'SBI': 'SBIN.NS',
143
+ 'KOTAK-MAHINDRA-BANK': 'KOTAKBANK.NS',
144
+ 'POWER-GRID-CORPORATION-OF-INDIA': 'POWERGRID.NS',
145
+ 'AXIS-BANK': 'AXISBANK.NS',
146
+
147
+ 'NTPC': 'NTPC.NS',
148
+ 'TECH-MAHINDRA': 'TECHM.NS',
149
+ 'ADANI-PORTS': 'ADANIPORTS.NS',
150
+ 'ULTRATECH-CEMENT': 'ULTRACEMCO.NS',
151
+ 'NESTLE': 'NESTLE.NS',
152
+ 'BHARAT-PETROLEUM': 'BPCL.NS'
153
+ }
154
+
155
+ def get_stock_data(self, symbol: str):
156
+ """Fetch stock data from Yahoo Finance"""
157
+ try:
158
+ # Convert symbol to Yahoo Finance format
159
+ yf_symbol = self.stock_mapping.get(symbol.upper(), f"{symbol.upper()}.NS")
160
+ stock = yf.Ticker(yf_symbol)
161
+ info = stock.info
162
+
163
+ # Check if the response is valid
164
+ if not info or 'currentPrice' not in info:
165
+ return {"error": f"Stock symbol '{symbol}' not found or invalid. Please verify the symbol."}
166
+
167
+ return {
168
+ "current_price": info.get("currentPrice", "N/A"),
169
+ "previous_close": info.get("previousClose", "N/A"),
170
+ "day_high": info.get("dayHigh", "N/A"),
171
+ "day_low": info.get("dayLow", "N/A"),
172
+ "last_updated": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
173
+ }
174
+ except Exception as e:
175
+ return {"error": f"Could not fetch stock data: {str(e)}"}
176
+
177
+
178
+ class RAGPipeline:
179
+ def __init__(self, model_path):
180
+ self.tokenizer = tokenizer # Use already loaded tokenizer
181
+ self.model = model # Use already loaded model
182
+ self.stock_retriever = StockDataRetriever()
183
+ self.encoder = SentenceTransformer('all-MiniLM-L6-v2')
184
+
185
+ # Expanded and more flexible knowledge base
186
+ self.knowledge_base = [
187
+ "stock price of",
188
+ "current price",
189
+ "stock performance",
190
+ "today's stock price",
191
+ "stock data for",
192
+ "price of stock"
193
+ ]
194
+ self.knowledge_embeddings = self.encoder.encode(self.knowledge_base)
195
+
196
+ # Predefined stock symbols for easier matching
197
+ self.stock_symbols = list(self.stock_retriever.stock_mapping.keys())
198
+
199
+ def _extract_stock_symbol(self, query):
200
+ # Try to find a stock symbol in the query
201
+ query_upper = query.upper()
202
+ for symbol in self.stock_symbols:
203
+ if symbol in query_upper:
204
+ return symbol
205
+
206
+ # Fallback: try to extract the last word if it looks like a symbol
207
+ words = query.split()
208
+ if words and len(words[-1]) > 1:
209
+ return words[-1].upper()
210
+
211
+ return None
212
+
213
+ def _is_price_query(self, query):
214
+ query_embedding = self.encoder.encode([query.lower()])
215
+ similarities = cosine_similarity(query_embedding, self.knowledge_embeddings)[0]
216
+
217
+ # Lower the threshold and check if any similarity is significant
218
+ return max(similarities) > 0.5
219
+
220
+ def _format_stock_data(self, stock_data):
221
+ """Format stock data into a readable string"""
222
+ if 'error' in stock_data:
223
+ return stock_data['error']
224
+
225
+ return (
226
+ f"Stock Data:\n"
227
+ f"Current Price: ₹{stock_data['current_price']}\n"
228
+ f"Previous Close: ₹{stock_data['previous_close']}\n"
229
+ f"Day's High: ₹{stock_data['day_high']}\n"
230
+ f"Day's Low: ₹{stock_data['day_low']}\n"
231
+ f"Last Updated: {stock_data['last_updated']}"
232
+ )
233
+
234
+ def generate_response(self, query):
235
+ # Check if the query is related to stock prices
236
+ stock_context = ""
237
+ if self._is_price_query(query):
238
+ # Extract stock symbol
239
+ symbol = self._extract_stock_symbol(query)
240
+
241
+ if symbol:
242
+ # Retrieve stock data
243
+ stock_data = self.stock_retriever.get_stock_data(symbol)
244
+ stock_context = self._format_stock_data(stock_data)
245
+ else:
246
+ stock_context = "No specific stock symbol could be identified."
247
+
248
+ # Prepare input for the model with stock context
249
+ full_prompt = (
250
+ f"Context: {stock_context}\n\n"
251
+ f"Question: {query}\n"
252
+ "Answer:"
253
+ )
254
+
255
+ # Generate response using the fine-tuned model
256
+ inputs = self.tokenizer(full_prompt, return_tensors="pt").to(self.model.device)
257
+ with torch.no_grad():
258
+ outputs = self.model.generate(inputs["input_ids"], max_length=500)
259
+
260
+ return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
261
+
262
+
263
+ # Initialize the pipeline once
264
+ try:
265
+ pipeline = RAGPipeline(model_name)
266
+ print("RAG Pipeline initialized successfully")
267
+ except Exception as e:
268
+ print(f"Error initializing RAG Pipeline: {e}")
269
+ raise
270
+
271
+ # Chatbot Interface function
272
+ def chat(message, history):
273
+ history = history or []
274
+ try:
275
+ response = pipeline.generate_response(message)
276
+ history.append((message, response))
277
+ except Exception as e:
278
+ history.append((message, f"Error generating response: {str(e)}"))
279
+ return history, ""
280
+
281
+ # Define the Gradio interface
282
+ def create_interface():
283
+ with gr.Blocks(css=css) as iface:
284
+ gr.HTML("<h1>Indian Stock Market Assistant</h1>")
285
+ gr.HTML("<p>Ask me about Indian stock prices or any general questions.</p>")
286
+
287
+ chatbot = gr.Chatbot(height=600, elem_id="chatbot")
288
+ txt = gr.Textbox(
289
+ placeholder="Type your question here (e.g., 'What is the current price of RELIANCE?')",
290
+ show_label=False
291
+ )
292
+
293
+ txt.submit(chat, [txt, chatbot], [chatbot, txt])
294
+
295
+ gr.HTML("""
296
+ <div style="text-align: center; margin-top: 20px; padding: 10px; background-color: #f0f0f0; border-radius: 5px;">
297
+ <p>This chatbot provides real-time Indian stock market data and can answer general questions.</p>
298
+ <p>Examples: "What's the current price of TCS?", "How is HDFC performing today?", "Tell me about RELIANCE stock"</p>
299
+ </div>
300
+ """)
301
+
302
+ return iface
303
 
304
+ # Create and launch the interface
305
+ try:
306
+ iface = create_interface()
307
+ print("Interface created successfully")
308
+ except Exception as e:
309
+ print(f"Error creating interface: {e}")
310
+ raise
311
 
312
+ # For Hugging Face Spaces deployment
313
  if __name__ == "__main__":
314
+ iface.launch()