Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoImageProcessor, AutoModelForImageClassification
|
3 |
+
from PIL import Image
|
4 |
+
import torch
|
5 |
+
|
6 |
+
model_name = "prithivMLmods/open-deepfake-detection"
|
7 |
+
processor = AutoImageProcessor.from_pretrained(model_name)
|
8 |
+
model = AutoModelForImageClassification.from_pretrained(model_name)
|
9 |
+
model.eval()
|
10 |
+
|
11 |
+
def predict(img):
|
12 |
+
inputs = processor(images=img, return_tensors="pt")
|
13 |
+
with torch.no_grad():
|
14 |
+
outputs = model(**inputs)
|
15 |
+
logits = outputs.logits
|
16 |
+
probs = torch.softmax(logits, dim=1).squeeze()
|
17 |
+
is_ai = bool(torch.argmax(probs).item())
|
18 |
+
confidence = float(probs[1].item()) if is_ai else float(probs[0].item())
|
19 |
+
message = "AI-generated image detected." if is_ai else "Image appears original/authentic."
|
20 |
+
return {"is_ai_generated": is_ai, "confidence": confidence, "message": message}
|
21 |
+
|
22 |
+
iface = gr.Interface(fn=predict, inputs=gr.Image(type="pil"), outputs="json", allow_flagging="never")
|
23 |
+
iface.launch()
|