Spaces:
Sleeping
Sleeping
File size: 1,655 Bytes
5de8802 76864f3 5de8802 76864f3 5de8802 1e6330e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
from flores200_codes import flores_codes
model_dict = {}
def load_models(model_name: str):
# build model and tokenizer
model_name_dict = {
# Here we aim to use only Distilled model
"nllb-distilled-1.3B": "facebook/nllb-200-distilled-1.3B",
}[model_name]
print("\tLoading model: %s" % model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name_dict)
tokenizer = AutoTokenizer.from_pretrained(model_name_dict)
model_dict[model_name + "_model"] = model
model_dict[model_name + "_tokenizer"] = tokenizer
return model_dict
def translation(model_name: str, source, target, text: str):
model_dict = load_models(model_name)
source = flores_codes[source]
target = flores_codes[target]
model = model_dict[model_name + "_model"]
tokenizer = model_dict[model_name + "_tokenizer"]
translator = pipeline(
"translation",
model=model,
tokenizer=tokenizer,
src_lang=source,
tgt_lang=target,
)
output = translator(text, max_length=400)
output = output[0]["translation_text"]
result = {
"result": output,
}
return result
'''NLLB_EXAMPLES = [
["nllb-distilled-1.3B", "English", "Shan", "Hello, how are you today?"],
["nllb-distilled-1.3B", "Shan", "English", "မႂ်ႇသုင်ၶႃႈ ယူႇလီယူႇၶႃႈၼေႃႈ"],
[
"nllb-distilled-1.3B",
"English",
"Shan",
"Forming Myanmar’s New Political System Will Remain an Ideal but Never in Practicality",
],
]
''' |