File size: 10,289 Bytes
53bf50a
a0ade0a
 
2a3a970
a0ade0a
 
460a080
a0ade0a
 
 
e8a0f17
53bf50a
2a3a970
036e563
82ed97f
bf036e1
e8a0f17
036e563
 
 
b1dcc65
036e563
 
b1dcc65
036e563
b1dcc65
bf6da96
 
 
6b0ab1a
 
 
 
 
 
 
 
bf6da96
 
e9d9124
a0ade0a
8cb52d1
 
32a87d5
2bf0a50
8907f87
2bf0a50
2a3a970
2bf0a50
 
 
 
2a3a970
8cb52d1
 
a0ade0a
8cb52d1
2a3a970
a0ade0a
2a3a970
 
 
 
6b0ab1a
 
 
 
 
 
 
 
 
 
 
5ba216a
 
6b0ab1a
 
 
 
5ba216a
6b0ab1a
 
 
 
6f0c78d
2a3a970
a0ade0a
2a3a970
 
 
6b0ab1a
 
 
 
2a3a970
 
 
a0ade0a
886193f
b49c174
5e6d454
a8497b9
a0ade0a
a8497b9
886193f
 
 
 
a0ade0a
886193f
 
 
 
a9c9e52
 
03ebe5e
 
a9c9e52
 
 
ac8f612
 
 
 
 
 
 
 
a9c9e52
 
5ba216a
 
886193f
 
a9c9e52
b49c174
 
 
 
 
a0ade0a
886193f
a9c9e52
886193f
 
a9c9e52
b49c174
 
 
886193f
a0ade0a
5e6d454
 
a0ade0a
5e6d454
b1dcc65
443d088
5e6d454
443d088
 
 
 
 
 
f87218a
 
ed1078c
443d088
 
ed1078c
b1dcc65
5e6d454
443d088
b1dcc65
5e6d454
443d088
5e6d454
b1dcc65
efec366
b1dcc65
5e6d454
 
 
 
 
b1dcc65
5e6d454
 
 
 
 
 
b1dcc65
5e6d454
b7c9c79
5e6d454
 
 
 
 
 
 
 
 
 
 
d79b3e8
3a9b2f3
 
 
 
9352ec1
 
a0ade0a
9352ec1
a0ade0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b779906
b1dcc65
5e6d454
9352ec1
a0ade0a
 
 
 
9352ec1
5a5168a
b1dcc65
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
from __future__ import annotations
from typing import Iterable, List, Dict, Tuple

import gradio as gr
from gradio.themes.base import Base
from gradio.themes.soft import Soft
from gradio.themes.monochrome import Monochrome
from gradio.themes.default import Default
from gradio.themes.utils import colors, fonts, sizes

import spaces
import torch
import os
import io
import re
import colorsys

import numpy as np

from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModelForTokenClassification, pipeline

import matplotlib.pyplot as plt
import plotly.graph_objects as go
from wordcloud import WordCloud


def hex_to_rgb(hex_color: str) -> tuple[int, int, int]:
    hex_color = hex_color.lstrip('#')
    return tuple(int(hex_color[i:i+2], 16) for i in (0, 2, 4))

def rgb_to_hex(rgb_color: tuple[int, int, int]) -> str:
    return "#{:02x}{:02x}{:02x}".format(*rgb_color)

def adjust_brightness(rgb_color: tuple[int, int, int], factor: float) -> tuple[int, int, int]:
    hsv_color = colorsys.rgb_to_hsv(*[v / 255.0 for v in rgb_color])
    new_v = max(0, min(hsv_color[2] * factor, 1))
    new_rgb = colorsys.hsv_to_rgb(hsv_color[0], hsv_color[1], new_v)
    return tuple(int(v * 255) for v in new_rgb)

monochrome = Monochrome()

auth_token = os.environ['HF_TOKEN']

tokenizer_bin = AutoTokenizer.from_pretrained("AlGe/deberta-v3-large_token", token=auth_token)
model_bin = AutoModelForTokenClassification.from_pretrained("AlGe/deberta-v3-large_token", token=auth_token)
tokenizer_bin.model_max_length = 512
pipe_bin = pipeline("ner", model=model_bin, tokenizer=tokenizer_bin)

tokenizer_ext = AutoTokenizer.from_pretrained("AlGe/deberta-v3-large_AIS-token", token=auth_token)
model_ext = AutoModelForTokenClassification.from_pretrained("AlGe/deberta-v3-large_AIS-token", token=auth_token)
tokenizer_ext.model_max_length = 512
pipe_ext = pipeline("ner", model=model_ext, tokenizer=tokenizer_ext)

model1 = AutoModelForSequenceClassification.from_pretrained("AlGe/deberta-v3-large_Int_segment", num_labels=1, token=auth_token)
tokenizer1 = AutoTokenizer.from_pretrained("AlGe/deberta-v3-large_Int_segment", token=auth_token)

model2 = AutoModelForSequenceClassification.from_pretrained("AlGe/deberta-v3-large_seq_ext", num_labels=1, token=auth_token)

def process_ner(text: str, pipeline) -> dict:
    output = pipeline(text)
    entities = []
    current_entity = None

    for token in output:
        entity_type = token['entity'][2:]
        entity_prefix = token['entity'][:1]

        if current_entity is None or entity_type != current_entity['entity'] or (entity_prefix == 'B' and entity_type == current_entity['entity']):
            if current_entity is not None:
                entities.append(current_entity)
            current_entity = {
                "entity": entity_type,
                "start": token['start'],
                "end": token['end'],
                "score": token['score'],
                "tokens": [token['word']]
            }
        else:
            current_entity['end'] = token['end']
            current_entity['score'] = max(current_entity['score'], token['score'])
            current_entity['tokens'].append(token['word'])

    if current_entity is not None:
        entities.append(current_entity)

    return {"text": text, "entities": entities}

def process_classification(text: str, model1, model2, tokenizer1) -> Tuple[str, str, str]:
    inputs1 = tokenizer1(text, max_length=512, return_tensors='pt', truncation=True, padding=True)
    
    with torch.no_grad():
        outputs1 = model1(**inputs1)
        outputs2 = model2(**inputs1)
    
    prediction1 = outputs1[0].item()
    prediction2 = outputs2[0].item()
    score = prediction1 / (prediction2 + prediction1)

    return f"{round(prediction1, 1)}", f"{round(prediction2, 1)}", f"{round(score, 2)}"


def generate_charts(ner_output_bin: dict, ner_output_ext: dict) -> Tuple[go.Figure, go.Figure, np.ndarray]:
    entities_bin = [entity['entity'] for entity in ner_output_bin['entities']]
    entities_ext = [entity['entity'] for entity in ner_output_ext['entities']]
    
    # Counting entities for binary classification
    entity_counts_bin = {entity: entities_bin.count(entity) for entity in set(entities_bin)}
    bin_labels = list(entity_counts_bin.keys())
    bin_sizes = list(entity_counts_bin.values())
    
    # Counting entities for extended classification
    entity_counts_ext = {entity: entities_ext.count(entity) for entity in set(entities_ext)}
    ext_labels = list(entity_counts_ext.keys())
    ext_sizes = list(entity_counts_ext.values())

    bin_color_map = {
        "External": "#6ad5bc",
        "Internal": "#ee8bac"
    }

    ext_color_map = {
        "INTemothou": "#FF7F50",  # Coral
        "INTpercept": "#FF4500",  # OrangeRed
        "INTtime": "#FF6347",     # Tomato
        "INTplace": "#FFD700",    # Gold
        "INTevent": "#FFA500",    # Orange
        "EXTsemantic": "#4682B4", # SteelBlue
        "EXTrepetition": "#5F9EA0", # CadetBlue
        "EXTother": "#00CED1",    # DarkTurquoise
    }

    bin_colors = [bin_color_map.get(label, "#FFFFFF") for label in bin_labels]
    ext_colors = [ext_color_map.get(label, "#FFFFFF") for label in ext_labels]
    
    # Create pie chart for extended classification
    fig1 = go.Figure(data=[go.Pie(labels=ext_labels, values=ext_sizes, textinfo='label+percent', hole=.3, marker=dict(colors=ext_colors))])
    fig1.update_layout(
        template='plotly_dark',
        plot_bgcolor='rgba(0,0,0,0)',
        paper_bgcolor='rgba(0,0,0,0)'
    )
    
    # Create bar chart for binary classification
    fig2 = go.Figure(data=[go.Bar(x=bin_labels, y=bin_sizes, marker=dict(color=bin_colors))])
    fig2.update_layout(
        xaxis_title='Entity Type',
        yaxis_title='Count',
        template='plotly_dark',
        plot_bgcolor='rgba(0,0,0,0)',
        paper_bgcolor='rgba(0,0,0,0)'
    )
    
    # Generate word cloud
    wordcloud_image = generate_wordcloud(ner_output_ext['entities'], ext_color_map)
    
    return fig1, fig2, wordcloud_image


def generate_wordcloud(entities: List[Dict], color_map: Dict[str, str]) -> np.ndarray:
    token_texts = []
    token_scores = []
    token_types = []

    for entity in entities:
        for token in entity['tokens']:
            # Remove any leading non-alphanumeric characters
            cleaned_token = re.sub(r'^\W+', '', token)
            token_texts.append(cleaned_token)
            token_scores.append(entity['score'])
            token_types.append(entity['entity'])
            print(f"{cleaned_token} ({entity['entity']}): {entity['score']}")

    # Create a dictionary for word cloud
    word_freq = {text: score for text, score in zip(token_texts, token_scores)}

    def color_func(word, font_size, position, orientation, random_state=None, **kwargs):
        entity_type = next((t for t, w in zip(token_types, token_texts) if w == word), None)
        return color_map.get(entity_type, "#FFFFFF")

    wordcloud = WordCloud(width=800, height=400, background_color='#121212', color_func=color_func).generate_from_frequencies(word_freq)

    # Convert to image array
    plt.figure(figsize=(10, 5))
    plt.imshow(wordcloud, interpolation='bilinear')
    plt.axis('off')
    plt.tight_layout(pad=0)

    # Convert plt to numpy array
    plt_image = plt.gcf()
    plt_image.canvas.draw()
    image_array = np.frombuffer(plt_image.canvas.tostring_rgb(), dtype=np.uint8)
    image_array = image_array.reshape(plt_image.canvas.get_width_height()[::-1] + (3,))
    plt.close()

    return image_array

@spaces.GPU
def all(text: str):
    ner_output_bin = process_ner(text, pipe_bin)
    ner_output_ext = process_ner(text, pipe_ext)
    classification_output = process_classification(text, model1, model2, tokenizer1)
    
    pie_chart, bar_chart, wordcloud_image = generate_charts(ner_output_bin, ner_output_ext)
    
    return (ner_output_bin, ner_output_ext, 
            classification_output[0], classification_output[1], classification_output[2],
            pie_chart, bar_chart, wordcloud_image)

examples = [
    ['Bevor ich meinen Hund kaufte bin ich immer alleine durch den Park gelaufen. Gestern war ich aber mit dem Hund losgelaufen. Das Wetter war sehr schön, nicht wie sonst im Winter. Ich weiß nicht genau. Mir fällt sonst nichts dazu ein. Wir trafen auf mehrere Spaziergänger. Ein Mann mit seinem Kind. Das Kind hat ein Eis gegessen.'],
]

iface = gr.Interface(
    fn=all,
    inputs=gr.Textbox(lines=5, label="Input Text", placeholder="Write about how your breakfast went or anything else that happened or might happen to you ..."),
    outputs=[
        gr.HighlightedText(label="Binary Sequence Classification",
                           color_map={
                               "External": "#6ad5bcff",
                               "Internal": "#ee8bacff"}
                          ),
        gr.HighlightedText(label="Extended Sequence Classification",
                           color_map={
                               "INTemothou": "#FF7F50",  # Coral
                               "INTpercept": "#FF4500",  # OrangeRed
                               "INTtime": "#FF6347",     # Tomato
                               "INTplace": "#FFD700",    # Gold
                               "INTevent": "#FFA500",    # Orange
                               "EXTsemantic": "#4682B4", # SteelBlue
                               "EXTrepetition": "#5F9EA0", # CadetBlue
                               "EXTother": "#00CED1",    # DarkTurquoise
                           }
                          ),
        gr.Label(label="Internal Detail Count"),
        gr.Label(label="External Detail Count"),
        gr.Label(label="Approximated Internal Detail Ratio"),
        gr.Plot(label="Extended SeqClass Entity Distribution Pie Chart"),
        gr.Plot(label="Binary SeqClass Entity Count Bar Chart"),
        gr.Image(label="Entity Word Cloud")
    ],
    title="Scoring Demo",
    description="Autobiographical Memory Analysis: This demo combines two text - and two sequence classification models to showcase our automated Autobiographical Interview scoring method. Submit a narrative to see the results.",
    examples=examples,
    theme=monochrome
)

iface.launch()