from __future__ import annotations from typing import Iterable, List, Dict, Tuple import gradio as gr from gradio.themes.base import Base from gradio.themes.soft import Soft from gradio.themes.monochrome import Monochrome from gradio.themes.default import Default from gradio.themes.utils import colors, fonts, sizes import spaces import torch import os import io import re import colorsys import numpy as np from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModelForTokenClassification, pipeline import matplotlib.pyplot as plt import plotly.graph_objects as go from wordcloud import WordCloud def hex_to_rgb(hex_color: str) -> tuple[int, int, int]: hex_color = hex_color.lstrip('#') return tuple(int(hex_color[i:i+2], 16) for i in (0, 2, 4)) def rgb_to_hex(rgb_color: tuple[int, int, int]) -> str: return "#{:02x}{:02x}{:02x}".format(*rgb_color) def adjust_brightness(rgb_color: tuple[int, int, int], factor: float) -> tuple[int, int, int]: hsv_color = colorsys.rgb_to_hsv(*[v / 255.0 for v in rgb_color]) new_v = max(0, min(hsv_color[2] * factor, 1)) new_rgb = colorsys.hsv_to_rgb(hsv_color[0], hsv_color[1], new_v) return tuple(int(v * 255) for v in new_rgb) monochrome = Monochrome() auth_token = os.environ['HF_TOKEN'] tokenizer_bin = AutoTokenizer.from_pretrained("AlGe/deberta-v3-large_token", token=auth_token) model_bin = AutoModelForTokenClassification.from_pretrained("AlGe/deberta-v3-large_token", token=auth_token) tokenizer_bin.model_max_length = 512 pipe_bin = pipeline("ner", model=model_bin, tokenizer=tokenizer_bin) tokenizer_ext = AutoTokenizer.from_pretrained("AlGe/deberta-v3-large_AIS-token", token=auth_token) model_ext = AutoModelForTokenClassification.from_pretrained("AlGe/deberta-v3-large_AIS-token", token=auth_token) tokenizer_ext.model_max_length = 512 pipe_ext = pipeline("ner", model=model_ext, tokenizer=tokenizer_ext) model1 = AutoModelForSequenceClassification.from_pretrained("AlGe/deberta-v3-large_Int_segment", num_labels=1, token=auth_token) tokenizer1 = AutoTokenizer.from_pretrained("AlGe/deberta-v3-large_Int_segment", token=auth_token) model2 = AutoModelForSequenceClassification.from_pretrained("AlGe/deberta-v3-large_seq_ext", num_labels=1, token=auth_token) def process_ner(text: str, pipeline) -> dict: output = pipeline(text) entities = [] current_entity = None for token in output: entity_type = token['entity'][2:] entity_prefix = token['entity'][:1] if current_entity is None or entity_type != current_entity['entity'] or (entity_prefix == 'B' and entity_type == current_entity['entity']): if current_entity is not None: entities.append(current_entity) current_entity = { "entity": entity_type, "start": token['start'], "end": token['end'], "score": token['score'], "tokens": [token['word']] } else: current_entity['end'] = token['end'] current_entity['score'] = max(current_entity['score'], token['score']) current_entity['tokens'].append(token['word']) if current_entity is not None: entities.append(current_entity) return {"text": text, "entities": entities} def process_classification(text: str, model1, model2, tokenizer1) -> Tuple[str, str, str]: inputs1 = tokenizer1(text, max_length=512, return_tensors='pt', truncation=True, padding=True) with torch.no_grad(): outputs1 = model1(**inputs1) outputs2 = model2(**inputs1) prediction1 = outputs1[0].item() prediction2 = outputs2[0].item() score = prediction1 / (prediction2 + prediction1) return f"{round(prediction1, 1)}", f"{round(prediction2, 1)}", f"{round(score, 2)}" def generate_charts(ner_output_bin: dict, ner_output_ext: dict) -> Tuple[go.Figure, go.Figure, np.ndarray]: entities_bin = [entity['entity'] for entity in ner_output_bin['entities']] entities_ext = [entity['entity'] for entity in ner_output_ext['entities']] # Counting entities for binary classification entity_counts_bin = {entity: entities_bin.count(entity) for entity in set(entities_bin)} bin_labels = list(entity_counts_bin.keys()) bin_sizes = list(entity_counts_bin.values()) # Counting entities for extended classification entity_counts_ext = {entity: entities_ext.count(entity) for entity in set(entities_ext)} ext_labels = list(entity_counts_ext.keys()) ext_sizes = list(entity_counts_ext.values()) bin_color_map = { "External": "#6ad5bc", "Internal": "#ee8bac" } ext_color_map = { "INTemothou": "#FF7F50", # Coral "INTpercept": "#FF4500", # OrangeRed "INTtime": "#FF6347", # Tomato "INTplace": "#FFD700", # Gold "INTevent": "#FFA500", # Orange "EXTsemantic": "#4682B4", # SteelBlue "EXTrepetition": "#5F9EA0", # CadetBlue "EXTother": "#00CED1", # DarkTurquoise } bin_colors = [bin_color_map.get(label, "#FFFFFF") for label in bin_labels] ext_colors = [ext_color_map.get(label, "#FFFFFF") for label in ext_labels] # Create pie chart for extended classification fig1 = go.Figure(data=[go.Pie(labels=ext_labels, values=ext_sizes, textinfo='label+percent', hole=.3, marker=dict(colors=ext_colors))]) fig1.update_layout( template='plotly_dark', plot_bgcolor='rgba(0,0,0,0)', paper_bgcolor='rgba(0,0,0,0)' ) # Create bar chart for binary classification fig2 = go.Figure(data=[go.Bar(x=bin_labels, y=bin_sizes, marker=dict(color=bin_colors))]) fig2.update_layout( xaxis_title='Entity Type', yaxis_title='Count', template='plotly_dark', plot_bgcolor='rgba(0,0,0,0)', paper_bgcolor='rgba(0,0,0,0)' ) # Generate word cloud wordcloud_image = generate_wordcloud(ner_output_ext['entities'], ext_color_map) return fig1, fig2, wordcloud_image def generate_wordcloud(entities: List[Dict], color_map: Dict[str, str]) -> np.ndarray: token_texts = [] token_scores = [] token_types = [] for entity in entities: for token in entity['tokens']: # Remove any leading non-alphanumeric characters cleaned_token = re.sub(r'^\W+', '', token) token_texts.append(cleaned_token) token_scores.append(entity['score']) token_types.append(entity['entity']) print(f"{cleaned_token} ({entity['entity']}): {entity['score']}") # Create a dictionary for word cloud word_freq = {text: score for text, score in zip(token_texts, token_scores)} def color_func(word, font_size, position, orientation, random_state=None, **kwargs): entity_type = next((t for t, w in zip(token_types, token_texts) if w == word), None) return color_map.get(entity_type, "#FFFFFF") wordcloud = WordCloud(width=800, height=400, background_color='#121212', color_func=color_func).generate_from_frequencies(word_freq) # Convert to image array plt.figure(figsize=(10, 5)) plt.imshow(wordcloud, interpolation='bilinear') plt.axis('off') plt.tight_layout(pad=0) # Convert plt to numpy array plt_image = plt.gcf() plt_image.canvas.draw() image_array = np.frombuffer(plt_image.canvas.tostring_rgb(), dtype=np.uint8) image_array = image_array.reshape(plt_image.canvas.get_width_height()[::-1] + (3,)) plt.close() return image_array @spaces.GPU def all(text: str): ner_output_bin = process_ner(text, pipe_bin) ner_output_ext = process_ner(text, pipe_ext) classification_output = process_classification(text, model1, model2, tokenizer1) pie_chart, bar_chart, wordcloud_image = generate_charts(ner_output_bin, ner_output_ext) return (ner_output_bin, ner_output_ext, classification_output[0], classification_output[1], classification_output[2], pie_chart, bar_chart, wordcloud_image) examples = [ ['Bevor ich meinen Hund kaufte bin ich immer alleine durch den Park gelaufen. Gestern war ich aber mit dem Hund losgelaufen. Das Wetter war sehr schön, nicht wie sonst im Winter. Ich weiß nicht genau. Mir fällt sonst nichts dazu ein. Wir trafen auf mehrere Spaziergänger. Ein Mann mit seinem Kind. Das Kind hat ein Eis gegessen.'], ] iface = gr.Interface( fn=all, inputs=gr.Textbox(lines=5, label="Input Text", placeholder="Write about how your breakfast went or anything else that happened or might happen to you ..."), outputs=[ gr.HighlightedText(label="Binary Sequence Classification", color_map={ "External": "#6ad5bcff", "Internal": "#ee8bacff"} ), gr.HighlightedText(label="Extended Sequence Classification", color_map={ "INTemothou": "#FF7F50", # Coral "INTpercept": "#FF4500", # OrangeRed "INTtime": "#FF6347", # Tomato "INTplace": "#FFD700", # Gold "INTevent": "#FFA500", # Orange "EXTsemantic": "#4682B4", # SteelBlue "EXTrepetition": "#5F9EA0", # CadetBlue "EXTother": "#00CED1", # DarkTurquoise } ), gr.Label(label="Internal Detail Count"), gr.Label(label="External Detail Count"), gr.Label(label="Approximated Internal Detail Ratio"), gr.Plot(label="Extended SeqClass Entity Distribution Pie Chart"), gr.Plot(label="Binary SeqClass Entity Count Bar Chart"), gr.Image(label="Entity Word Cloud") ], title="Scoring Demo", description="Autobiographical Memory Analysis: This demo combines two text - and two sequence classification models to showcase our automated Autobiographical Interview scoring method. Submit a narrative to see the results.", examples=examples, theme=monochrome ) iface.launch()