|
import torch |
|
import gradio as gr |
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModelForTokenClassification |
|
import os |
|
|
|
|
|
tokenizer_ext = AutoTokenizer.from_pretrained("AlGe/deberta-v3-large_token") |
|
model_ext = AutoModelForTokenClassification.from_pretrained("AlGe/deberta-v3-large_token") |
|
tokenizer_ext.model_max_length = 512 |
|
pipe_ext = gr.pipeline("ner", model=model_ext, tokenizer=tokenizer_ext) |
|
|
|
|
|
tokenizer_ais = AutoTokenizer.from_pretrained("AlGe/deberta-v3-large_AIS-token") |
|
model_ais = AutoModelForTokenClassification.from_pretrained("AlGe/deberta-v3-large_AIS-token") |
|
tokenizer_ais.model_max_length = 512 |
|
pipe_ais = gr.pipeline("ner", model=model_ais, tokenizer=tokenizer_ais) |
|
|
|
|
|
auth_token = os.environ['HF_TOKEN'] |
|
model1 = AutoModelForSequenceClassification.from_pretrained("AlGe/deberta-v3-large_Int_segment", num_labels=1, use_auth_token=auth_token) |
|
tokenizer1 = AutoTokenizer.from_pretrained("AlGe/deberta-v3-large_Int_segment", use_auth_token=auth_token) |
|
|
|
model2 = AutoModelForSequenceClassification.from_pretrained("AlGe/deberta-v3-large_seq_ext", num_labels=1, use_auth_token=auth_token) |
|
|
|
|
|
def process_ner(text, pipeline): |
|
output = pipeline(text) |
|
entities = [] |
|
current_entity = None |
|
|
|
for token in output: |
|
entity_type = token['entity'][2:] |
|
entity_prefix = token['entity'][:1] |
|
|
|
if current_entity is None or entity_type != current_entity['entity'] or (entity_prefix == 'B' and entity_type == current_entity['entity']): |
|
if current_entity is not None: |
|
entities.append(current_entity) |
|
current_entity = { |
|
"entity": entity_type, |
|
"start": token['start'], |
|
"end": token['end'], |
|
"score": token['score'] |
|
} |
|
else: |
|
current_entity['end'] = token['end'] |
|
current_entity['score'] = max(current_entity['score'], token['score']) |
|
|
|
if current_entity is not None: |
|
entities.append(current_entity) |
|
|
|
return {"text": text, "entities": entities} |
|
|
|
def process_classification(text, model1, model2, tokenizer1): |
|
inputs1 = tokenizer1(text, max_length=512, return_tensors='pt', truncation=True, padding=True) |
|
|
|
with torch.no_grad(): |
|
outputs1 = model1(**inputs1) |
|
outputs2 = model2(**inputs1) |
|
|
|
prediction1 = outputs1[0].item() |
|
prediction2 = outputs2[0].item() |
|
score = prediction1 / (prediction2 + prediction1) |
|
|
|
return f"{round(prediction1, 1)}", f"{round(prediction2, 1)}", f"{round(score, 2)}" |
|
|
|
|
|
iface = gr.Interface( |
|
fn={ |
|
"NER - Extended Sequence Classification": lambda text: process_ner(text, pipe_ext), |
|
"NER - Autobiographical Interview Scoring": lambda text: process_ner(text, pipe_ais), |
|
"Internal Detail Count": lambda text: process_classification(text, model1, model2, tokenizer1)[0], |
|
"External Detail Count": lambda text: process_classification(text, model1, model2, tokenizer1)[1], |
|
"Approximated Internal Detail Ratio": lambda text: process_classification(text, model1, model2, tokenizer1)[2] |
|
}, |
|
inputs=gr.Textbox(placeholder="Enter sentence here..."), |
|
outputs=[ |
|
gr.HighlightedText(label="NER - Extended Sequence Classification"), |
|
gr.HighlightedText(label="NER - Autobiographical Interview Scoring"), |
|
gr.Label(label="Internal Detail Count"), |
|
gr.Label(label="External Detail Count"), |
|
gr.Label(label="Approximated Internal Detail Ratio") |
|
], |
|
title="Combined Demo", |
|
description="This demo combines two different NER models and two different sequence classification models. Enter a sentence to see the results.", |
|
theme="monochrome" |
|
) |
|
|
|
|
|
iface.launch() |
|
|