Update app.py
Browse files
app.py
CHANGED
@@ -106,7 +106,6 @@ def generate_charts(ner_output_bin: dict) -> Tuple[go.Figure, np.ndarray]:
|
|
106 |
|
107 |
return fig2, wordcloud_image
|
108 |
|
109 |
-
|
110 |
def generate_wordcloud(entities: List[Dict], color_map: Dict[str, str]) -> np.ndarray:
|
111 |
token_texts = []
|
112 |
token_scores = []
|
@@ -114,10 +113,11 @@ def generate_wordcloud(entities: List[Dict], color_map: Dict[str, str]) -> np.nd
|
|
114 |
|
115 |
for entity in entities:
|
116 |
for token in entity['tokens']:
|
117 |
-
|
|
|
118 |
token_scores.append(entity['score'])
|
119 |
token_types.append(entity['entity'])
|
120 |
-
print(f"{
|
121 |
|
122 |
# Create a dictionary for word cloud
|
123 |
word_freq = {text: score for text, score in zip(token_texts, token_scores)}
|
@@ -143,6 +143,7 @@ def generate_wordcloud(entities: List[Dict], color_map: Dict[str, str]) -> np.nd
|
|
143 |
|
144 |
return image_array
|
145 |
|
|
|
146 |
@spaces.GPU
|
147 |
def all(text: str):
|
148 |
ner_output_bin = process_ner(text, pipe_bin)
|
|
|
106 |
|
107 |
return fig2, wordcloud_image
|
108 |
|
|
|
109 |
def generate_wordcloud(entities: List[Dict], color_map: Dict[str, str]) -> np.ndarray:
|
110 |
token_texts = []
|
111 |
token_scores = []
|
|
|
113 |
|
114 |
for entity in entities:
|
115 |
for token in entity['tokens']:
|
116 |
+
cleaned_token = token.lstrip('_')
|
117 |
+
token_texts.append(cleaned_token)
|
118 |
token_scores.append(entity['score'])
|
119 |
token_types.append(entity['entity'])
|
120 |
+
print(f"{cleaned_token} ({entity['entity']}): {entity['score']}")
|
121 |
|
122 |
# Create a dictionary for word cloud
|
123 |
word_freq = {text: score for text, score in zip(token_texts, token_scores)}
|
|
|
143 |
|
144 |
return image_array
|
145 |
|
146 |
+
|
147 |
@spaces.GPU
|
148 |
def all(text: str):
|
149 |
ner_output_bin = process_ner(text, pipe_bin)
|