Update app.py
Browse files
app.py
CHANGED
@@ -75,6 +75,8 @@ def process_ner(text: str, pipeline) -> dict:
|
|
75 |
|
76 |
return {"text": text, "entities": entities}
|
77 |
|
|
|
|
|
78 |
def generate_charts(ner_output_bin: dict) -> Tuple[go.Figure, np.ndarray]:
|
79 |
entities_bin = [entity['entity'] for entity in ner_output_bin['entities']]
|
80 |
|
@@ -83,7 +85,6 @@ def generate_charts(ner_output_bin: dict) -> Tuple[go.Figure, np.ndarray]:
|
|
83 |
bin_labels = list(entity_counts_bin.keys())
|
84 |
bin_sizes = list(entity_counts_bin.values())
|
85 |
|
86 |
-
|
87 |
bin_color_map = {
|
88 |
"External": "#6ad5bc",
|
89 |
"Internal": "#ee8bac"
|
@@ -91,7 +92,6 @@ def generate_charts(ner_output_bin: dict) -> Tuple[go.Figure, np.ndarray]:
|
|
91 |
|
92 |
bin_colors = [bin_color_map.get(label, "#FFFFFF") for label in bin_labels]
|
93 |
|
94 |
-
|
95 |
# Create bar chart for binary classification
|
96 |
fig2 = go.Figure(data=[go.Bar(x=bin_labels, y=bin_sizes, marker=dict(color=bin_colors))])
|
97 |
fig2.update_layout(
|
@@ -103,14 +103,22 @@ def generate_charts(ner_output_bin: dict) -> Tuple[go.Figure, np.ndarray]:
|
|
103 |
)
|
104 |
|
105 |
# Generate word cloud
|
106 |
-
wordcloud_image = generate_wordcloud(ner_output_bin['entities'], bin_color_map, "dh3.
|
107 |
|
108 |
return fig2, wordcloud_image
|
109 |
|
110 |
def generate_wordcloud(entities: List[Dict], color_map: Dict[str, str], file_path: str) -> np.ndarray:
|
111 |
-
|
112 |
-
|
|
|
113 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
mask_image = np.array(Image.open(image_path))
|
115 |
|
116 |
token_texts = []
|
@@ -119,14 +127,12 @@ def generate_wordcloud(entities: List[Dict], color_map: Dict[str, str], file_pat
|
|
119 |
|
120 |
for entity in entities:
|
121 |
for token in entity['tokens']:
|
122 |
-
# Remove any leading non-alphanumeric characters
|
123 |
cleaned_token = re.sub(r'^\W+', '', token)
|
124 |
token_texts.append(cleaned_token)
|
125 |
token_scores.append(entity['score'])
|
126 |
token_types.append(entity['entity'])
|
127 |
print(f"{cleaned_token} ({entity['entity']}): {entity['score']}")
|
128 |
|
129 |
-
# Create a dictionary for word cloud
|
130 |
word_freq = {text: score for text, score in zip(token_texts, token_scores)}
|
131 |
|
132 |
def color_func(word, font_size, position, orientation, random_state=None, **kwargs):
|
@@ -135,13 +141,11 @@ def generate_wordcloud(entities: List[Dict], color_map: Dict[str, str], file_pat
|
|
135 |
|
136 |
wordcloud = WordCloud(width=800, height=400, background_color='#121212', mask=mask_image, color_func=color_func).generate_from_frequencies(word_freq)
|
137 |
|
138 |
-
# Convert to image array
|
139 |
plt.figure(figsize=(10, 5))
|
140 |
plt.imshow(wordcloud, interpolation='bilinear')
|
141 |
plt.axis('off')
|
142 |
plt.tight_layout(pad=0)
|
143 |
|
144 |
-
# Convert plt to numpy array
|
145 |
plt_image = plt.gcf()
|
146 |
plt_image.canvas.draw()
|
147 |
image_array = np.frombuffer(plt_image.canvas.tostring_rgb(), dtype=np.uint8)
|
|
|
75 |
|
76 |
return {"text": text, "entities": entities}
|
77 |
|
78 |
+
import os
|
79 |
+
|
80 |
def generate_charts(ner_output_bin: dict) -> Tuple[go.Figure, np.ndarray]:
|
81 |
entities_bin = [entity['entity'] for entity in ner_output_bin['entities']]
|
82 |
|
|
|
85 |
bin_labels = list(entity_counts_bin.keys())
|
86 |
bin_sizes = list(entity_counts_bin.values())
|
87 |
|
|
|
88 |
bin_color_map = {
|
89 |
"External": "#6ad5bc",
|
90 |
"Internal": "#ee8bac"
|
|
|
92 |
|
93 |
bin_colors = [bin_color_map.get(label, "#FFFFFF") for label in bin_labels]
|
94 |
|
|
|
95 |
# Create bar chart for binary classification
|
96 |
fig2 = go.Figure(data=[go.Bar(x=bin_labels, y=bin_sizes, marker=dict(color=bin_colors))])
|
97 |
fig2.update_layout(
|
|
|
103 |
)
|
104 |
|
105 |
# Generate word cloud
|
106 |
+
wordcloud_image = generate_wordcloud(ner_output_bin['entities'], bin_color_map, "dh3.png")
|
107 |
|
108 |
return fig2, wordcloud_image
|
109 |
|
110 |
def generate_wordcloud(entities: List[Dict], color_map: Dict[str, str], file_path: str) -> np.ndarray:
|
111 |
+
# Construct the absolute path
|
112 |
+
base_path = os.path.dirname(os.path.abspath(__file__))
|
113 |
+
image_path = os.path.join(base_path, file_path)
|
114 |
|
115 |
+
# Debugging statement to print the image path
|
116 |
+
print(f"Image path: {image_path}")
|
117 |
+
|
118 |
+
# Check if the file exists
|
119 |
+
if not os.path.exists(image_path):
|
120 |
+
raise FileNotFoundError(f"Mask image file not found: {image_path}")
|
121 |
+
|
122 |
mask_image = np.array(Image.open(image_path))
|
123 |
|
124 |
token_texts = []
|
|
|
127 |
|
128 |
for entity in entities:
|
129 |
for token in entity['tokens']:
|
|
|
130 |
cleaned_token = re.sub(r'^\W+', '', token)
|
131 |
token_texts.append(cleaned_token)
|
132 |
token_scores.append(entity['score'])
|
133 |
token_types.append(entity['entity'])
|
134 |
print(f"{cleaned_token} ({entity['entity']}): {entity['score']}")
|
135 |
|
|
|
136 |
word_freq = {text: score for text, score in zip(token_texts, token_scores)}
|
137 |
|
138 |
def color_func(word, font_size, position, orientation, random_state=None, **kwargs):
|
|
|
141 |
|
142 |
wordcloud = WordCloud(width=800, height=400, background_color='#121212', mask=mask_image, color_func=color_func).generate_from_frequencies(word_freq)
|
143 |
|
|
|
144 |
plt.figure(figsize=(10, 5))
|
145 |
plt.imshow(wordcloud, interpolation='bilinear')
|
146 |
plt.axis('off')
|
147 |
plt.tight_layout(pad=0)
|
148 |
|
|
|
149 |
plt_image = plt.gcf()
|
150 |
plt_image.canvas.draw()
|
151 |
image_array = np.frombuffer(plt_image.canvas.tostring_rgb(), dtype=np.uint8)
|