AlGe commited on
Commit
443d088
·
verified ·
1 Parent(s): 6f0c78d

Update app.py

Browse files

change to display tokens instead

Files changed (1) hide show
  1. app.py +12 -5
app.py CHANGED
@@ -155,16 +155,23 @@ def generate_charts(ner_output_bin: dict, ner_output_ext: dict) -> Tuple[go.Figu
155
 
156
  return fig1, fig2, wordcloud_image
157
 
 
158
  def generate_wordcloud(entities: List[Dict], color_map: Dict[str, str]) -> np.ndarray:
159
- entity_texts = [entity['entity'] for entity in entities]
160
- entity_scores = [entity['score'] for entity in entities]
161
- entity_types = [entity['entity'] for entity in entities]
 
 
 
 
 
 
162
 
163
  # Create a dictionary for word cloud
164
- word_freq = {text: score for text, score in zip(entity_texts, entity_scores)}
165
 
166
  def color_func(word, font_size, position, orientation, random_state=None, **kwargs):
167
- entity_type = next(entity['entity'] for entity in entities if entity['entity'] == word)
168
  return color_map.get(entity_type, "#FFFFFF")
169
 
170
  wordcloud = WordCloud(width=800, height=400, background_color='black', color_func=color_func).generate_from_frequencies(word_freq)
 
155
 
156
  return fig1, fig2, wordcloud_image
157
 
158
+
159
  def generate_wordcloud(entities: List[Dict], color_map: Dict[str, str]) -> np.ndarray:
160
+ token_texts = []
161
+ token_scores = []
162
+ token_types = []
163
+
164
+ for entity in entities:
165
+ for token in entity['tokens']:
166
+ token_texts.append(token)
167
+ token_scores.append(entity['score'])
168
+ token_types.append(entity['entity'])
169
 
170
  # Create a dictionary for word cloud
171
+ word_freq = {text: score for text, score in zip(token_texts, token_scores)}
172
 
173
  def color_func(word, font_size, position, orientation, random_state=None, **kwargs):
174
+ entity_type = next((t for t, w in zip(token_types, token_texts) if w == word), None)
175
  return color_map.get(entity_type, "#FFFFFF")
176
 
177
  wordcloud = WordCloud(width=800, height=400, background_color='black', color_func=color_func).generate_from_frequencies(word_freq)