AlGe commited on
Commit
53bf50a
·
verified ·
1 Parent(s): e2bd035

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +55 -2
app.py CHANGED
@@ -1,7 +1,60 @@
1
- import torch
 
 
2
  import gradio as gr
 
 
 
 
3
  from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModelForTokenClassification, pipeline
4
  import os
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
 
6
  auth_token = os.environ['HF_TOKEN']
7
 
@@ -89,7 +142,7 @@ iface = gr.Interface(
89
  title="Scoring Demo",
90
  description="Autobiographical Memory Analysis: This demo combines two text - and two sequence classification models to showcase our automated Autobiographical Interview scoring method. Submit a narrative to see the results.",
91
  examples =examples,
92
- theme="soft" #monochrome
93
  )
94
 
95
  # Launch the combined interface
 
1
+ from __future__ import annotations
2
+ from typing import Iterable
3
+
4
  import gradio as gr
5
+ from gradio.themes.base import Base
6
+ from gradio.themes.utils import colors, fonts, sizes
7
+
8
+ import torch
9
  from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModelForTokenClassification, pipeline
10
  import os
11
+ import time
12
+
13
+ # Helper function to convert hex to RGB tuple
14
+ def hex_to_rgb(hex_color: str) -> tuple[int, int, int]:
15
+ hex_color = hex_color.lstrip('#')
16
+ return tuple(int(hex_color[i:i+2], 16) for i in (0, 2, 4))
17
+
18
+ class MPGPoster(Base):
19
+ def __init__(
20
+ self,
21
+ *,
22
+ primary_hue: colors.Color | str = colors.Color(*hex_to_rgb("#f47317")),
23
+ background_hue: colors.Color | str = colors.Color(*hex_to_rgb("#f6f6f6ff")),
24
+ secondary_dark_hue: colors.Color | str = colors.Color(*hex_to_rgb("#006c66")),
25
+ secondary_light_hue: colors.Color | str = colors.Color(*hex_to_rgb("#6ad5bc")),
26
+ tertiary_highlight_hue: colors.Color | str = colors.Color(*hex_to_rgb("#fbf22c")),
27
+ spacing_size: sizes.Size | str = sizes.spacing_md,
28
+ radius_size: sizes.Size | str = sizes.radius_md,
29
+ text_size: sizes.Size | str = sizes.text_lg,
30
+ font: fonts.Font
31
+ | str
32
+ | Iterable[fonts.Font | str] = (
33
+ fonts.GoogleFont("Quicksand"),
34
+ "ui-sans-serif",
35
+ "sans-serif",
36
+ ),
37
+ font_mono: fonts.Font
38
+ | str
39
+ | Iterable[fonts.Font | str] = (
40
+ fonts.GoogleFont("IBM Plex Mono"),
41
+ "ui-monospace",
42
+ "monospace",
43
+ ),
44
+ ):
45
+ super().__init__(
46
+ primary_hue=primary_hue,
47
+ secondary_hue=secondary_dark_hue, # Assuming secondary dark hue as main secondary
48
+ neutral_hue=background_hue, # Assuming background hue as neutral
49
+ spacing_size=spacing_size,
50
+ radius_size=radius_size,
51
+ text_size=text_size,
52
+ font=font,
53
+ font_mono=font_mono,
54
+ )
55
+
56
+ # Using the theme in a Gradio interface
57
+ mpg_poster = MPGPoster()
58
 
59
  auth_token = os.environ['HF_TOKEN']
60
 
 
142
  title="Scoring Demo",
143
  description="Autobiographical Memory Analysis: This demo combines two text - and two sequence classification models to showcase our automated Autobiographical Interview scoring method. Submit a narrative to see the results.",
144
  examples =examples,
145
+ theme= mpg_poster #"soft" #monochrome
146
  )
147
 
148
  # Launch the combined interface