Update app.py
Browse files
app.py
CHANGED
@@ -3,24 +3,25 @@ import gradio as gr
|
|
3 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModelForTokenClassification
|
4 |
import os
|
5 |
|
|
|
|
|
6 |
# Load the tokenizer and models for the first pipeline
|
7 |
-
tokenizer_ext = AutoTokenizer.from_pretrained("AlGe/deberta-v3-large_token")
|
8 |
-
model_ext = AutoModelForTokenClassification.from_pretrained("AlGe/deberta-v3-large_token")
|
9 |
tokenizer_ext.model_max_length = 512
|
10 |
pipe_ext = gr.pipeline("ner", model=model_ext, tokenizer=tokenizer_ext)
|
11 |
|
12 |
# Load the tokenizer and models for the second pipeline
|
13 |
-
tokenizer_ais = AutoTokenizer.from_pretrained("AlGe/deberta-v3-large_AIS-token")
|
14 |
-
model_ais = AutoModelForTokenClassification.from_pretrained("AlGe/deberta-v3-large_AIS-token")
|
15 |
tokenizer_ais.model_max_length = 512
|
16 |
pipe_ais = gr.pipeline("ner", model=model_ais, tokenizer=tokenizer_ais)
|
17 |
|
18 |
# Load the tokenizer and models for the third pipeline
|
19 |
-
|
20 |
-
|
21 |
-
tokenizer1 = AutoTokenizer.from_pretrained("AlGe/deberta-v3-large_Int_segment", use_auth_token=auth_token)
|
22 |
|
23 |
-
model2 = AutoModelForSequenceClassification.from_pretrained("AlGe/deberta-v3-large_seq_ext", num_labels=1,
|
24 |
|
25 |
# Define functions to process inputs
|
26 |
def process_ner(text, pipeline):
|
|
|
3 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModelForTokenClassification
|
4 |
import os
|
5 |
|
6 |
+
auth_token = os.environ['HF_TOKEN']
|
7 |
+
|
8 |
# Load the tokenizer and models for the first pipeline
|
9 |
+
tokenizer_ext = AutoTokenizer.from_pretrained("AlGe/deberta-v3-large_token", token=auth_token)
|
10 |
+
model_ext = AutoModelForTokenClassification.from_pretrained("AlGe/deberta-v3-large_token", token=auth_token)
|
11 |
tokenizer_ext.model_max_length = 512
|
12 |
pipe_ext = gr.pipeline("ner", model=model_ext, tokenizer=tokenizer_ext)
|
13 |
|
14 |
# Load the tokenizer and models for the second pipeline
|
15 |
+
tokenizer_ais = AutoTokenizer.from_pretrained("AlGe/deberta-v3-large_AIS-token", token=auth_token)
|
16 |
+
model_ais = AutoModelForTokenClassification.from_pretrained("AlGe/deberta-v3-large_AIS-token", token=auth_token)
|
17 |
tokenizer_ais.model_max_length = 512
|
18 |
pipe_ais = gr.pipeline("ner", model=model_ais, tokenizer=tokenizer_ais)
|
19 |
|
20 |
# Load the tokenizer and models for the third pipeline
|
21 |
+
model1 = AutoModelForSequenceClassification.from_pretrained("AlGe/deberta-v3-large_Int_segment", num_labels=1, token=auth_token)
|
22 |
+
tokenizer1 = AutoTokenizer.from_pretrained("AlGe/deberta-v3-large_Int_segment", token=auth_token)
|
|
|
23 |
|
24 |
+
model2 = AutoModelForSequenceClassification.from_pretrained("AlGe/deberta-v3-large_seq_ext", num_labels=1, token=auth_token)
|
25 |
|
26 |
# Define functions to process inputs
|
27 |
def process_ner(text, pipeline):
|