Update app.py
Browse files
app.py
CHANGED
@@ -12,98 +12,76 @@ import spaces
|
|
12 |
import torch
|
13 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModelForTokenClassification, pipeline
|
14 |
import os
|
|
|
15 |
import colorsys
|
16 |
import matplotlib.pyplot as plt
|
17 |
|
18 |
def hex_to_rgb(hex_color: str) -> tuple[int, int, int]:
|
19 |
hex_color = hex_color.lstrip('#')
|
20 |
return tuple(int(hex_color[i:i+2], 16) for i in (0, 2, 4))
|
21 |
-
|
22 |
-
def rgb_to_hex(rgb_color: tuple[int, int, int]) -> str:
|
23 |
-
return "#{:02x}{:02x}{:02x}".format(*rgb_color)
|
24 |
-
|
25 |
-
def adjust_brightness(rgb_color: tuple[int, int, int], factor: float) -> tuple[int, int, int]:
|
26 |
-
hsv_color = colorsys.rgb_to_hsv(*[v / 255.0 for v in rgb_color])
|
27 |
-
new_v = max(0, min(hsv_color[2] * factor, 1))
|
28 |
-
new_rgb = colorsys.hsv_to_rgb(hsv_color[0], hsv_color[1], new_v)
|
29 |
return tuple(int(v * 255) for v in new_rgb)
|
30 |
|
31 |
monochrome = Monochrome()
|
32 |
|
33 |
auth_token = os.environ['HF_TOKEN']
|
34 |
|
|
|
35 |
tokenizer_bin = AutoTokenizer.from_pretrained("AlGe/deberta-v3-large_token", token=auth_token)
|
36 |
model_bin = AutoModelForTokenClassification.from_pretrained("AlGe/deberta-v3-large_token", token=auth_token)
|
37 |
tokenizer_bin.model_max_length = 512
|
38 |
pipe_bin = pipeline("ner", model=model_bin, tokenizer=tokenizer_bin)
|
39 |
|
|
|
40 |
tokenizer_ext = AutoTokenizer.from_pretrained("AlGe/deberta-v3-large_AIS-token", token=auth_token)
|
41 |
model_ext = AutoModelForTokenClassification.from_pretrained("AlGe/deberta-v3-large_AIS-token", token=auth_token)
|
42 |
tokenizer_ext.model_max_length = 512
|
43 |
pipe_ext = pipeline("ner", model=model_ext, tokenizer=tokenizer_ext)
|
44 |
|
|
|
45 |
model1 = AutoModelForSequenceClassification.from_pretrained("AlGe/deberta-v3-large_Int_segment", num_labels=1, token=auth_token)
|
46 |
tokenizer1 = AutoTokenizer.from_pretrained("AlGe/deberta-v3-large_Int_segment", token=auth_token)
|
47 |
|
48 |
model2 = AutoModelForSequenceClassification.from_pretrained("AlGe/deberta-v3-large_seq_ext", num_labels=1, token=auth_token)
|
49 |
|
50 |
def process_ner(text: str, pipeline) -> dict:
|
|
|
51 |
output = pipeline(text)
|
52 |
entities = []
|
53 |
current_entity = None
|
54 |
|
55 |
-
for token in output:
|
56 |
-
entity_type = token['entity'][2:]
|
57 |
-
entity_prefix = token['entity'][:1]
|
58 |
-
|
59 |
-
if current_entity is None or entity_type != current_entity['entity'] or (entity_prefix == 'B' and entity_type == current_entity['entity']):
|
60 |
-
if current_entity is not None:
|
61 |
-
entities.append(current_entity)
|
62 |
-
current_entity = {
|
63 |
-
"entity": entity_type,
|
64 |
-
"start": token['start'],
|
65 |
-
"end": token['end'],
|
66 |
-
"score": token['score']
|
67 |
-
}
|
68 |
-
else:
|
69 |
-
current_entity['end'] = token['end']
|
70 |
-
current_entity['score'] = max(current_entity['score'], token['score'])
|
71 |
-
|
72 |
-
if current_entity is not None:
|
73 |
-
entities.append(current_entity)
|
74 |
-
|
75 |
return {"text": text, "entities": entities}
|
76 |
|
77 |
def process_classification(text: str, model1, model2, tokenizer1) -> Tuple[str, str, str]:
|
78 |
inputs1 = tokenizer1(text, max_length=512, return_tensors='pt', truncation=True, padding=True)
|
79 |
|
80 |
with torch.no_grad():
|
81 |
-
outputs1 = model1(**inputs1)
|
82 |
-
outputs2 = model2(**inputs1)
|
83 |
-
|
84 |
-
prediction1 = outputs1[0].item()
|
85 |
prediction2 = outputs2[0].item()
|
86 |
score = prediction1 / (prediction2 + prediction1)
|
87 |
|
88 |
return f"{round(prediction1, 1)}", f"{round(prediction2, 1)}", f"{round(score, 2)}"
|
89 |
-
|
90 |
-
def generate_charts(ner_output_bin: dict, ner_output_ext: dict
|
|
|
91 |
entities_ext = [entity['entity'] for entity in ner_output_ext['entities']]
|
|
|
|
|
92 |
entity_counts_ext = {entity: entities_ext.count(entity) for entity in set(entities_ext)}
|
93 |
|
94 |
-
|
95 |
-
|
|
|
|
|
|
|
96 |
|
97 |
fig1, ax1 = plt.subplots()
|
98 |
-
ax1.pie(
|
99 |
ax1.axis('equal')
|
100 |
|
101 |
fig2, ax2 = plt.subplots()
|
102 |
-
|
103 |
-
|
104 |
-
ax2.
|
105 |
-
ax2.
|
106 |
-
ax2.set_title('Internal vs External Details and Classification Score')
|
107 |
|
108 |
return fig1, fig2
|
109 |
|
@@ -111,18 +89,21 @@ def generate_charts(ner_output_bin: dict, ner_output_ext: dict, internal_count:
|
|
111 |
def all(text: str):
|
112 |
ner_output_bin = process_ner(text, pipe_bin)
|
113 |
ner_output_ext = process_ner(text, pipe_ext)
|
114 |
-
|
115 |
|
116 |
-
pie_chart, bar_chart = generate_charts(ner_output_bin, ner_output_ext
|
117 |
|
118 |
return (ner_output_bin, ner_output_ext,
|
119 |
-
|
120 |
pie_chart, bar_chart)
|
121 |
|
|
|
|
|
122 |
examples = [
|
123 |
['Bevor ich meinen Hund kaufte bin ich immer alleine durch den Park gelaufen. Gestern war ich aber mit dem Hund losgelaufen. Das Wetter war sehr schön, nicht wie sonst im Winter. Ich weiß nicht genau. Mir fällt sonst nichts dazu ein. Wir trafen auf mehrere Spaziergänger. Ein Mann mit seinem Kind. Das Kind hat ein Eis gegessen.'],
|
124 |
]
|
125 |
|
|
|
126 |
iface = gr.Interface(
|
127 |
fn=all,
|
128 |
inputs=gr.Textbox(lines=5, label="Input Text", placeholder="Write about how your breakfast went or anything else that happened or might happen to you ..."),
|
@@ -148,8 +129,8 @@ iface = gr.Interface(
|
|
148 |
gr.Label(label="Internal Detail Count"),
|
149 |
gr.Label(label="External Detail Count"),
|
150 |
gr.Label(label="Approximated Internal Detail Ratio"),
|
151 |
-
gr.Plot(label="
|
152 |
-
gr.Plot(label="
|
153 |
],
|
154 |
title="Scoring Demo",
|
155 |
description="Autobiographical Memory Analysis: This demo combines two text - and two sequence classification models to showcase our automated Autobiographical Interview scoring method. Submit a narrative to see the results.",
|
@@ -157,4 +138,4 @@ iface = gr.Interface(
|
|
157 |
theme=monochrome
|
158 |
)
|
159 |
|
160 |
-
iface.launch()
|
|
|
12 |
import torch
|
13 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModelForTokenClassification, pipeline
|
14 |
import os
|
15 |
+
|
16 |
import colorsys
|
17 |
import matplotlib.pyplot as plt
|
18 |
|
19 |
def hex_to_rgb(hex_color: str) -> tuple[int, int, int]:
|
20 |
hex_color = hex_color.lstrip('#')
|
21 |
return tuple(int(hex_color[i:i+2], 16) for i in (0, 2, 4))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
return tuple(int(v * 255) for v in new_rgb)
|
23 |
|
24 |
monochrome = Monochrome()
|
25 |
|
26 |
auth_token = os.environ['HF_TOKEN']
|
27 |
|
28 |
+
|
29 |
tokenizer_bin = AutoTokenizer.from_pretrained("AlGe/deberta-v3-large_token", token=auth_token)
|
30 |
model_bin = AutoModelForTokenClassification.from_pretrained("AlGe/deberta-v3-large_token", token=auth_token)
|
31 |
tokenizer_bin.model_max_length = 512
|
32 |
pipe_bin = pipeline("ner", model=model_bin, tokenizer=tokenizer_bin)
|
33 |
|
34 |
+
|
35 |
tokenizer_ext = AutoTokenizer.from_pretrained("AlGe/deberta-v3-large_AIS-token", token=auth_token)
|
36 |
model_ext = AutoModelForTokenClassification.from_pretrained("AlGe/deberta-v3-large_AIS-token", token=auth_token)
|
37 |
tokenizer_ext.model_max_length = 512
|
38 |
pipe_ext = pipeline("ner", model=model_ext, tokenizer=tokenizer_ext)
|
39 |
|
40 |
+
|
41 |
model1 = AutoModelForSequenceClassification.from_pretrained("AlGe/deberta-v3-large_Int_segment", num_labels=1, token=auth_token)
|
42 |
tokenizer1 = AutoTokenizer.from_pretrained("AlGe/deberta-v3-large_Int_segment", token=auth_token)
|
43 |
|
44 |
model2 = AutoModelForSequenceClassification.from_pretrained("AlGe/deberta-v3-large_seq_ext", num_labels=1, token=auth_token)
|
45 |
|
46 |
def process_ner(text: str, pipeline) -> dict:
|
47 |
+
|
48 |
output = pipeline(text)
|
49 |
entities = []
|
50 |
current_entity = None
|
51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
return {"text": text, "entities": entities}
|
53 |
|
54 |
def process_classification(text: str, model1, model2, tokenizer1) -> Tuple[str, str, str]:
|
55 |
inputs1 = tokenizer1(text, max_length=512, return_tensors='pt', truncation=True, padding=True)
|
56 |
|
57 |
with torch.no_grad():
|
|
|
|
|
|
|
|
|
58 |
prediction2 = outputs2[0].item()
|
59 |
score = prediction1 / (prediction2 + prediction1)
|
60 |
|
61 |
return f"{round(prediction1, 1)}", f"{round(prediction2, 1)}", f"{round(score, 2)}"
|
62 |
+
|
63 |
+
def generate_charts(ner_output_bin: dict, ner_output_ext: dict) -> Tuple[plt.Figure, plt.Figure]:
|
64 |
+
entities_bin = [entity['entity'] for entity in ner_output_bin['entities']]
|
65 |
entities_ext = [entity['entity'] for entity in ner_output_ext['entities']]
|
66 |
+
|
67 |
+
entity_counts_bin = {entity: entities_bin.count(entity) for entity in set(entities_bin)}
|
68 |
entity_counts_ext = {entity: entities_ext.count(entity) for entity in set(entities_ext)}
|
69 |
|
70 |
+
|
71 |
+
pie_labels_bin = list(entity_counts_bin.keys())
|
72 |
+
pie_sizes_bin = list(entity_counts_bin.values())
|
73 |
+
pie_labels_ext = list(entity_counts_ext.keys())
|
74 |
+
pie_sizes_ext = list(entity_counts_ext.values())
|
75 |
|
76 |
fig1, ax1 = plt.subplots()
|
77 |
+
ax1.pie(pie_sizes_ext, labels=pie_labels_ext, autopct='%1.1f%%', startangle=90)
|
78 |
ax1.axis('equal')
|
79 |
|
80 |
fig2, ax2 = plt.subplots()
|
81 |
+
ax2.bar(pie_labels_bin, pie_sizes_bin)
|
82 |
+
ax2.set_ylabel('Count')
|
83 |
+
ax2.set_xlabel('Entity Type')
|
84 |
+
ax2.set_title('Entity Counts')
|
|
|
85 |
|
86 |
return fig1, fig2
|
87 |
|
|
|
89 |
def all(text: str):
|
90 |
ner_output_bin = process_ner(text, pipe_bin)
|
91 |
ner_output_ext = process_ner(text, pipe_ext)
|
92 |
+
classification_output = process_classification(text, model1, model2, tokenizer1)
|
93 |
|
94 |
+
pie_chart, bar_chart = generate_charts(ner_output_bin, ner_output_ext)
|
95 |
|
96 |
return (ner_output_bin, ner_output_ext,
|
97 |
+
classification_output[0], classification_output[1], classification_output[2],
|
98 |
pie_chart, bar_chart)
|
99 |
|
100 |
+
|
101 |
+
|
102 |
examples = [
|
103 |
['Bevor ich meinen Hund kaufte bin ich immer alleine durch den Park gelaufen. Gestern war ich aber mit dem Hund losgelaufen. Das Wetter war sehr schön, nicht wie sonst im Winter. Ich weiß nicht genau. Mir fällt sonst nichts dazu ein. Wir trafen auf mehrere Spaziergänger. Ein Mann mit seinem Kind. Das Kind hat ein Eis gegessen.'],
|
104 |
]
|
105 |
|
106 |
+
|
107 |
iface = gr.Interface(
|
108 |
fn=all,
|
109 |
inputs=gr.Textbox(lines=5, label="Input Text", placeholder="Write about how your breakfast went or anything else that happened or might happen to you ..."),
|
|
|
129 |
gr.Label(label="Internal Detail Count"),
|
130 |
gr.Label(label="External Detail Count"),
|
131 |
gr.Label(label="Approximated Internal Detail Ratio"),
|
132 |
+
gr.Plot(label="Entity Distribution Pie Chart"),
|
133 |
+
gr.Plot(label="Entity Count Bar Chart")
|
134 |
],
|
135 |
title="Scoring Demo",
|
136 |
description="Autobiographical Memory Analysis: This demo combines two text - and two sequence classification models to showcase our automated Autobiographical Interview scoring method. Submit a narrative to see the results.",
|
|
|
138 |
theme=monochrome
|
139 |
)
|
140 |
|
141 |
+
iface.launch()
|