from __future__ import annotations from typing import Iterable, List, Dict, Tuple import gradio as gr from gradio.themes.base import Base from gradio.themes.soft import Soft from gradio.themes.monochrome import Monochrome from gradio.themes.default import Default from gradio.themes.utils import colors, fonts, sizes import spaces import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModelForTokenClassification, pipeline import os import colorsys import matplotlib.pyplot as plt import plotly.graph_objects as go from typing import Tuple import plotly.io as pio from wordcloud import WordCloud import io def hex_to_rgb(hex_color: str) -> tuple[int, int, int]: hex_color = hex_color.lstrip('#') return tuple(int(hex_color[i:i+2], 16) for i in (0, 2, 4)) def rgb_to_hex(rgb_color: tuple[int, int, int]) -> str: return "#{:02x}{:02x}{:02x}".format(*rgb_color) def adjust_brightness(rgb_color: tuple[int, int, int], factor: float) -> tuple[int, int, int]: hsv_color = colorsys.rgb_to_hsv(*[v / 255.0 for v in rgb_color]) new_v = max(0, min(hsv_color[2] * factor, 1)) new_rgb = colorsys.hsv_to_rgb(hsv_color[0], hsv_color[1], new_v) return tuple(int(v * 255) for v in new_rgb) monochrome = Monochrome() auth_token = os.environ['HF_TOKEN'] tokenizer_bin = AutoTokenizer.from_pretrained("AlGe/deberta-v3-large_token", token=auth_token) model_bin = AutoModelForTokenClassification.from_pretrained("AlGe/deberta-v3-large_token", token=auth_token) tokenizer_bin.model_max_length = 512 pipe_bin = pipeline("ner", model=model_bin, tokenizer=tokenizer_bin) tokenizer_ext = AutoTokenizer.from_pretrained("AlGe/deberta-v3-large_AIS-token", token=auth_token) model_ext = AutoModelForTokenClassification.from_pretrained("AlGe/deberta-v3-large_AIS-token", token=auth_token) tokenizer_ext.model_max_length = 512 pipe_ext = pipeline("ner", model=model_ext, tokenizer=tokenizer_ext) model1 = AutoModelForSequenceClassification.from_pretrained("AlGe/deberta-v3-large_Int_segment", num_labels=1, token=auth_token) tokenizer1 = AutoTokenizer.from_pretrained("AlGe/deberta-v3-large_Int_segment", token=auth_token) model2 = AutoModelForSequenceClassification.from_pretrained("AlGe/deberta-v3-large_seq_ext", num_labels=1, token=auth_token) def process_ner(text: str, pipeline) -> dict: output = pipeline(text) entities = [] current_entity = None for token in output: entity_type = token['entity'][2:] entity_prefix = token['entity'][:1] if current_entity is None or entity_type != current_entity['entity'] or (entity_prefix == 'B' and entity_type == current_entity['entity']): if current_entity is not None: entities.append(current_entity) current_entity = { "entity": entity_type, "start": token['start'], "end": token['end'], "score": token['score'] } else: current_entity['end'] = token['end'] current_entity['score'] = max(current_entity['score'], token['score']) if current_entity is not None: entities.append(current_entity) return {"entities": entities} def process_classification(text: str, model1, model2, tokenizer1) -> Tuple[str, str, str]: inputs1 = tokenizer1(text, max_length=512, return_tensors='pt', truncation=True, padding=True) with torch.no_grad(): outputs1 = model1(**inputs1) outputs2 = model2(**inputs1) prediction1 = outputs1[0].item() prediction2 = outputs2[0].item() score = prediction1 / (prediction2 + prediction1) return f"{round(prediction1, 1)}", f"{round(prediction2, 1)}", f"{round(score, 2)}" import plotly.graph_objects as go from typing import Tuple def generate_charts(ner_output_bin: dict, ner_output_ext: dict) -> Tuple[go.Figure, go.Figure, np.ndarray]: entities_bin = [entity['entity'] for entity in ner_output_bin['entities']] entities_ext = [entity['entity'] for entity in ner_output_ext['entities']] # Counting entities for binary classification entity_counts_bin = {entity: entities_bin.count(entity) for entity in set(entities_bin)} bin_labels = list(entity_counts_bin.keys()) bin_sizes = list(entity_counts_bin.values()) # Counting entities for extended classification entity_counts_ext = {entity: entities_ext.count(entity) for entity in set(entities_ext)} ext_labels = list(entity_counts_ext.keys()) ext_sizes = list(entity_counts_ext.values()) # Define color mapping bin_color_map = { "External": "#6ad5bc", "Internal": "#ee8bac" } ext_color_map = { "INTemothou": "#FF7F50", # Coral "INTpercept": "#FF4500", # OrangeRed "INTtime": "#FF6347", # Tomato "INTplace": "#FFD700", # Gold "INTevent": "#FFA500", # Orange "EXTsemantic": "#4682B4", # SteelBlue "EXTrepetition": "#5F9EA0", # CadetBlue "EXTother": "#00CED1", # DarkTurquoise } bin_colors = [bin_color_map[label] for label in bin_labels] ext_colors = [ext_color_map[label] for label in ext_labels] # Create pie chart for extended classification fig1 = go.Figure(data=[go.Pie(labels=ext_labels, values=ext_sizes, textinfo='label+percent', hole=.3, marker=dict(colors=ext_colors))]) fig1.update_layout( #title_text='Extended Sequence Classification Subclasses', template='plotly_dark', plot_bgcolor='rgba(0,0,0,0)', paper_bgcolor='rgba(0,0,0,0)' ) # Create bar chart for binary classification fig2 = go.Figure(data=[go.Bar(x=bin_labels, y=bin_sizes, marker=dict(color=bin_colors))]) fig2.update_layout( #title='Binary Sequence Classification Classes', xaxis_title='Entity Type', yaxis_title='Count', template='plotly_dark', plot_bgcolor='rgba(0,0,0,0)', paper_bgcolor='rgba(0,0,0,0)' ) # Generate word cloud wordcloud_image = generate_wordcloud(ner_output_ext['entities'], ext_color_map) return fig1, fig2, wordcloud_image def generate_wordcloud(entities: List[Dict], color_map: Dict[str, str]) -> np.ndarray: entity_texts = [entity['entity'] for entity in entities] entity_scores = [entity['score'] for entity in entities] entity_types = [entity['entity'] for entity in entities] # Create a dictionary for word cloud word_freq = {text: score for text, score in zip(entity_texts, entity_scores)} def color_func(word, font_size, position, orientation, random_state=None, **kwargs): entity_type = next(entity['entity'] for entity in entities if entity['entity'] == word) return color_map.get(entity_type, "#FFFFFF") wordcloud = WordCloud(width=800, height=400, background_color='black', color_func=color_func).generate_from_frequencies(word_freq) # Convert to image array plt.figure(figsize=(10, 5)) plt.imshow(wordcloud, interpolation='bilinear') plt.axis('off') plt.tight_layout(pad=0) # Convert plt to numpy array plt_image = plt.gcf() plt_image.canvas.draw() image_array = np.frombuffer(plt_image.canvas.tostring_rgb(), dtype=np.uint8) image_array = image_array.reshape(plt_image.canvas.get_width_height()[::-1] + (3,)) plt.close() return image_array @spaces.GPU def all(text: str): ner_output_bin = process_ner(text, pipe_bin) ner_output_ext = process_ner(text, pipe_ext) classification_output = process_classification(text, model1, model2, tokenizer1) pie_chart, bar_chart, wordcloud_image = generate_charts(ner_output_bin, ner_output_ext) return (ner_output_bin, ner_output_ext, classification_output[0], classification_output[1], classification_output[2], pie_chart, bar_chart, wordcloud_image) iface = gr.Interface( fn=all, inputs=gr.Textbox(lines=5, label="Input Text", placeholder="Write about how your breakfast went or anything else that happened or might happen to you ..."), outputs=[ gr.HighlightedText(label="Binary Sequence Classification", color_map={ "External": "#6ad5bcff", "Internal": "#ee8bacff"} ), gr.HighlightedText(label="Extended Sequence Classification", color_map={ "INTemothou": "#FF7F50", # Coral "INTpercept": "#FF4500", # OrangeRed "INTtime": "#FF6347", # Tomato "INTplace": "#FFD700", # Gold "INTevent": "#FFA500", # Orange "EXTsemantic": "#4682B4", # SteelBlue "EXTrepetition": "#5F9EA0", # CadetBlue "EXTother": "#00CED1", # DarkTurquoise } ), gr.Label(label="Internal Detail Count"), gr.Label(label="External Detail Count"), gr.Label(label="Approximated Internal Detail Ratio"), gr.Plot(label="Extended SeqClass Entity Distribution Pie Chart"), gr.Plot(label="Binary SeqClass Entity Count Bar Chart"), gr.Image(label="Entity Word Cloud") ], title="Scoring Demo", description="Autobiographical Memory Analysis: This demo combines two text - and two sequence classification models to showcase our automated Autobiographical Interview scoring method. Submit a narrative to see the results.", examples=examples, theme=monochrome ) iface.launch()