Spaces:
Runtime error
Runtime error
import torch | |
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModelForTokenClassification | |
import os | |
# Load the tokenizer and models for the first pipeline | |
tokenizer_ext = AutoTokenizer.from_pretrained("AlGe/deberta-v3-large_token") | |
model_ext = AutoModelForTokenClassification.from_pretrained("AlGe/deberta-v3-large_token") | |
tokenizer_ext.model_max_length = 512 | |
pipe_ext = gr.pipeline("ner", model=model_ext, tokenizer=tokenizer_ext) | |
# Load the tokenizer and models for the second pipeline | |
tokenizer_ais = AutoTokenizer.from_pretrained("AlGe/deberta-v3-large_AIS-token") | |
model_ais = AutoModelForTokenClassification.from_pretrained("AlGe/deberta-v3-large_AIS-token") | |
tokenizer_ais.model_max_length = 512 | |
pipe_ais = gr.pipeline("ner", model=model_ais, tokenizer=tokenizer_ais) | |
# Load the tokenizer and models for the third pipeline | |
auth_token = os.environ['HF_TOKEN'] | |
model1 = AutoModelForSequenceClassification.from_pretrained("AlGe/deberta-v3-large_Int_segment", num_labels=1, use_auth_token=auth_token) | |
tokenizer1 = AutoTokenizer.from_pretrained("AlGe/deberta-v3-large_Int_segment", use_auth_token=auth_token) | |
model2 = AutoModelForSequenceClassification.from_pretrained("AlGe/deberta-v3-large_seq_ext", num_labels=1, use_auth_token=auth_token) | |
# Define functions to process inputs | |
def process_ner(text, pipeline): | |
output = pipeline(text) | |
entities = [] | |
current_entity = None | |
for token in output: | |
entity_type = token['entity'][2:] | |
entity_prefix = token['entity'][:1] | |
if current_entity is None or entity_type != current_entity['entity'] or (entity_prefix == 'B' and entity_type == current_entity['entity']): | |
if current_entity is not None: | |
entities.append(current_entity) | |
current_entity = { | |
"entity": entity_type, | |
"start": token['start'], | |
"end": token['end'], | |
"score": token['score'] | |
} | |
else: | |
current_entity['end'] = token['end'] | |
current_entity['score'] = max(current_entity['score'], token['score']) | |
if current_entity is not None: | |
entities.append(current_entity) | |
return {"text": text, "entities": entities} | |
def process_classification(text, model1, model2, tokenizer1): | |
inputs1 = tokenizer1(text, max_length=512, return_tensors='pt', truncation=True, padding=True) | |
with torch.no_grad(): | |
outputs1 = model1(**inputs1) | |
outputs2 = model2(**inputs1) | |
prediction1 = outputs1[0].item() | |
prediction2 = outputs2[0].item() | |
score = prediction1 / (prediction2 + prediction1) | |
return f"{round(prediction1, 1)}", f"{round(prediction2, 1)}", f"{round(score, 2)}" | |
# Define Gradio interface | |
iface = gr.Interface( | |
fn={ | |
"NER - Extended Sequence Classification": lambda text: process_ner(text, pipe_ext), | |
"NER - Autobiographical Interview Scoring": lambda text: process_ner(text, pipe_ais), | |
"Internal Detail Count": lambda text: process_classification(text, model1, model2, tokenizer1)[0], | |
"External Detail Count": lambda text: process_classification(text, model1, model2, tokenizer1)[1], | |
"Approximated Internal Detail Ratio": lambda text: process_classification(text, model1, model2, tokenizer1)[2] | |
}, | |
inputs=gr.Textbox(placeholder="Enter sentence here..."), | |
outputs=[ | |
gr.HighlightedText(label="NER - Extended Sequence Classification"), | |
gr.HighlightedText(label="NER - Autobiographical Interview Scoring"), | |
gr.Label(label="Internal Detail Count"), | |
gr.Label(label="External Detail Count"), | |
gr.Label(label="Approximated Internal Detail Ratio") | |
], | |
title="Combined Demo", | |
description="This demo combines two different NER models and two different sequence classification models. Enter a sentence to see the results.", | |
theme="monochrome" | |
) | |
# Launch the combined interface | |
iface.launch() | |