AlGe commited on
Commit
b1dcc65
·
verified ·
1 Parent(s): 866a753

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +42 -13
app.py CHANGED
@@ -18,6 +18,10 @@ import plotly.graph_objects as go
18
  from typing import Tuple
19
  import plotly.io as pio
20
 
 
 
 
 
21
  def hex_to_rgb(hex_color: str) -> tuple[int, int, int]:
22
  hex_color = hex_color.lstrip('#')
23
  return tuple(int(hex_color[i:i+2], 16) for i in (0, 2, 4))
@@ -147,19 +151,43 @@ def generate_charts(ner_output_bin: dict, ner_output_ext: dict) -> Tuple[go.Figu
147
  paper_bgcolor='rgba(0,0,0,0)'
148
  )
149
 
150
- return fig1, fig2
 
151
 
152
- @spaces.GPU
153
- def all(text: str):
154
- ner_output_bin = process_ner(text, pipe_bin)
155
- ner_output_ext = process_ner(text, pipe_ext)
156
- classification_output = process_classification(text, model1, model2, tokenizer1)
157
-
158
- pie_chart, bar_chart = generate_charts(ner_output_bin, ner_output_ext)
159
 
160
- return (ner_output_bin, ner_output_ext,
161
- classification_output[0], classification_output[1], classification_output[2],
162
- pie_chart, bar_chart)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
163
 
164
  examples = [
165
  ['Bevor ich meinen Hund kaufte bin ich immer alleine durch den Park gelaufen. Gestern war ich aber mit dem Hund losgelaufen. Das Wetter war sehr schön, nicht wie sonst im Winter. Ich weiß nicht genau. Mir fällt sonst nichts dazu ein. Wir trafen auf mehrere Spaziergänger. Ein Mann mit seinem Kind. Das Kind hat ein Eis gegessen.'],
@@ -191,7 +219,8 @@ iface = gr.Interface(
191
  gr.Label(label="External Detail Count"),
192
  gr.Label(label="Approximated Internal Detail Ratio"),
193
  gr.Plot(label="Extended SeqClass Entity Distribution Pie Chart"),
194
- gr.Plot(label="Binary SeqClass Entity Count Bar Chart")
 
195
  ],
196
  title="Scoring Demo",
197
  description="Autobiographical Memory Analysis: This demo combines two text - and two sequence classification models to showcase our automated Autobiographical Interview scoring method. Submit a narrative to see the results.",
@@ -199,4 +228,4 @@ iface = gr.Interface(
199
  theme=monochrome
200
  )
201
 
202
- iface.launch()
 
18
  from typing import Tuple
19
  import plotly.io as pio
20
 
21
+
22
+ from wordcloud import WordCloud
23
+ import io
24
+
25
  def hex_to_rgb(hex_color: str) -> tuple[int, int, int]:
26
  hex_color = hex_color.lstrip('#')
27
  return tuple(int(hex_color[i:i+2], 16) for i in (0, 2, 4))
 
151
  paper_bgcolor='rgba(0,0,0,0)'
152
  )
153
 
154
+ # Create word cloud for extended classification entities
155
+ wordcloud_fig = generate_wordcloud(ner_output_ext['entities'], 'tab10')
156
 
157
+ return fig1, fig2, wordcloud_fig
158
+
159
+ def generate_wordcloud(entities: list, color_map: dict) -> plt.Figure:
160
+ word_freq = {entity['entity']: entity['score'] for entity in entities}
161
+ wc = WordCloud(width=800, height=400, background_color='black', colormap=color_map).generate_from_frequencies(word_freq)
 
 
162
 
163
+ fig, ax = plt.subplots(figsize=(10, 5))
164
+ ax.imshow(wc, interpolation='bilinear')
165
+ ax.axis('off')
166
+ return fig
167
+
168
+ @spaces.GPU
169
+ def all(text: str) -> Tuple[gr.HighlightedText, gr.HighlightedText, int, int, float, go.Figure, go.Figure, plt.Figure]:
170
+ ner_output_bin = process_ner(text, binary_pipeline)
171
+ ner_output_ext = process_ner(text, extended_pipeline)
172
+
173
+ binary_entities = [{"entity": ent["entity"], "score": ent["score"]} for ent in ner_output_bin["entities"]]
174
+ extended_entities = [{"entity": ent["entity"], "score": ent["score"]} for ent in ner_output_ext["entities"]]
175
+
176
+ bin_text = [{"text": text[ent["start"]:ent["end"]], "entity": ent["entity"]} for ent in ner_output_bin["entities"]]
177
+ ext_text = [{"text": text[ent["start"]:ent["end"]], "entity": ent["entity"]} for ent in ner_output_ext["entities"]]
178
+
179
+ fig1, fig2, wordcloud_fig = generate_charts(ner_output_bin, ner_output_ext)
180
+
181
+ # Convert the word cloud figure to an image for Gradio
182
+ buf = io.BytesIO()
183
+ wordcloud_fig.savefig(buf, format='png')
184
+ buf.seek(0)
185
+
186
+ internal_count = sum(1 for ent in ner_output_bin["entities"] if ent["entity"] == "Internal")
187
+ external_count = sum(1 for ent in ner_output_bin["entities"] if ent["entity"] == "External")
188
+ internal_ratio = internal_count / (internal_count + external_count) if (internal_count + external_count) > 0 else 0
189
+
190
+ return bin_text, ext_text, internal_count, external_count, internal_ratio, fig1, fig2, buf
191
 
192
  examples = [
193
  ['Bevor ich meinen Hund kaufte bin ich immer alleine durch den Park gelaufen. Gestern war ich aber mit dem Hund losgelaufen. Das Wetter war sehr schön, nicht wie sonst im Winter. Ich weiß nicht genau. Mir fällt sonst nichts dazu ein. Wir trafen auf mehrere Spaziergänger. Ein Mann mit seinem Kind. Das Kind hat ein Eis gegessen.'],
 
219
  gr.Label(label="External Detail Count"),
220
  gr.Label(label="Approximated Internal Detail Ratio"),
221
  gr.Plot(label="Extended SeqClass Entity Distribution Pie Chart"),
222
+ gr.Plot(label="Binary SeqClass Entity Count Bar Chart"),
223
+ gr.Image(label="Word Cloud of Extended Entities")
224
  ],
225
  title="Scoring Demo",
226
  description="Autobiographical Memory Analysis: This demo combines two text - and two sequence classification models to showcase our automated Autobiographical Interview scoring method. Submit a narrative to see the results.",
 
228
  theme=monochrome
229
  )
230
 
231
+ iface.launch()