AlGe commited on
Commit
f56b9d8
·
verified ·
1 Parent(s): 7031e38

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -6
app.py CHANGED
@@ -112,9 +112,17 @@ def generate_charts(ner_output_ext: dict) -> Tuple[go.Figure, np.ndarray]:
112
  return fig1, wordcloud_image
113
 
114
  def generate_wordcloud(entities: List[Dict], color_map: Dict[str, str], file_path: str) -> np.ndarray:
115
-
116
- image_path = os.path.join(os.path.dirname(__file__), file_path)
 
117
 
 
 
 
 
 
 
 
118
  mask_image = np.array(Image.open(image_path))
119
 
120
  token_texts = []
@@ -123,14 +131,12 @@ def generate_wordcloud(entities: List[Dict], color_map: Dict[str, str], file_pat
123
 
124
  for entity in entities:
125
  for token in entity['tokens']:
126
- # Remove any leading non-alphanumeric characters
127
  cleaned_token = re.sub(r'^\W+', '', token)
128
  token_texts.append(cleaned_token)
129
  token_scores.append(entity['score'])
130
  token_types.append(entity['entity'])
131
  print(f"{cleaned_token} ({entity['entity']}): {entity['score']}")
132
 
133
- # Create a dictionary for word cloud
134
  word_freq = {text: score for text, score in zip(token_texts, token_scores)}
135
 
136
  def color_func(word, font_size, position, orientation, random_state=None, **kwargs):
@@ -139,13 +145,11 @@ def generate_wordcloud(entities: List[Dict], color_map: Dict[str, str], file_pat
139
 
140
  wordcloud = WordCloud(width=800, height=400, background_color='#121212', mask=mask_image, color_func=color_func).generate_from_frequencies(word_freq)
141
 
142
- # Convert to image array
143
  plt.figure(figsize=(10, 5))
144
  plt.imshow(wordcloud, interpolation='bilinear')
145
  plt.axis('off')
146
  plt.tight_layout(pad=0)
147
 
148
- # Convert plt to numpy array
149
  plt_image = plt.gcf()
150
  plt_image.canvas.draw()
151
  image_array = np.frombuffer(plt_image.canvas.tostring_rgb(), dtype=np.uint8)
 
112
  return fig1, wordcloud_image
113
 
114
  def generate_wordcloud(entities: List[Dict], color_map: Dict[str, str], file_path: str) -> np.ndarray:
115
+ # Construct the absolute path
116
+ base_path = os.path.dirname(os.path.abspath(__file__))
117
+ image_path = os.path.join(base_path, file_path)
118
 
119
+ # Debugging statement to print the image path
120
+ print(f"Image path: {image_path}")
121
+
122
+ # Check if the file exists
123
+ if not os.path.exists(image_path):
124
+ raise FileNotFoundError(f"Mask image file not found: {image_path}")
125
+
126
  mask_image = np.array(Image.open(image_path))
127
 
128
  token_texts = []
 
131
 
132
  for entity in entities:
133
  for token in entity['tokens']:
 
134
  cleaned_token = re.sub(r'^\W+', '', token)
135
  token_texts.append(cleaned_token)
136
  token_scores.append(entity['score'])
137
  token_types.append(entity['entity'])
138
  print(f"{cleaned_token} ({entity['entity']}): {entity['score']}")
139
 
 
140
  word_freq = {text: score for text, score in zip(token_texts, token_scores)}
141
 
142
  def color_func(word, font_size, position, orientation, random_state=None, **kwargs):
 
145
 
146
  wordcloud = WordCloud(width=800, height=400, background_color='#121212', mask=mask_image, color_func=color_func).generate_from_frequencies(word_freq)
147
 
 
148
  plt.figure(figsize=(10, 5))
149
  plt.imshow(wordcloud, interpolation='bilinear')
150
  plt.axis('off')
151
  plt.tight_layout(pad=0)
152
 
 
153
  plt_image = plt.gcf()
154
  plt_image.canvas.draw()
155
  image_array = np.frombuffer(plt_image.canvas.tostring_rgb(), dtype=np.uint8)