Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,8 +2,11 @@ from smolagents import CodeAgent, tool
|
|
2 |
import datetime
|
3 |
import pytz
|
4 |
import yaml
|
5 |
-
import
|
6 |
-
import
|
|
|
|
|
|
|
7 |
from tools.final_answer import FinalAnswerTool
|
8 |
from Gradio_UI import GradioUI
|
9 |
|
@@ -65,67 +68,196 @@ def get_current_time_in_timezone(timezone: str) -> str:
|
|
65 |
except Exception as e:
|
66 |
return f"Error fetching time for timezone '{timezone}': {str(e)}"
|
67 |
|
68 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
@tool
|
70 |
-
def
|
71 |
-
"""
|
72 |
|
73 |
Args:
|
74 |
-
|
|
|
|
|
|
|
|
|
75 |
"""
|
76 |
try:
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
|
109 |
-
|
110 |
-
|
111 |
-
# Format the response
|
112 |
-
weather_report = f"""
|
113 |
-
Weather for {location}:
|
114 |
-
Current Conditions: {weather_desc}
|
115 |
-
Temperature: {temp_c}°C / {temp_f}°F (Feels like: {feels_like_c}°C)
|
116 |
-
Humidity: {humidity}%
|
117 |
-
Wind: {wind_speed} km/h, Direction: {wind_dir}
|
118 |
-
{forecast_info}
|
119 |
-
"""
|
120 |
|
121 |
-
|
|
|
|
|
|
|
122 |
|
123 |
-
except requests.exceptions.RequestException as e:
|
124 |
-
return f"Error fetching weather for {location}: Connection error - {str(e)}"
|
125 |
-
except json.JSONDecodeError:
|
126 |
-
return f"Error fetching weather for {location}: Invalid response from weather service"
|
127 |
except Exception as e:
|
128 |
-
return f"Error
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
|
130 |
# Set up the agent with our tools
|
131 |
final_answer = FinalAnswerTool()
|
@@ -142,10 +274,10 @@ model = HfApiModel(
|
|
142 |
custom_role_conversions=None,
|
143 |
)
|
144 |
|
145 |
-
# Create agent with our tools (
|
146 |
agent = CodeAgent(
|
147 |
model=model,
|
148 |
-
tools=[text_analyzer, get_current_time_in_timezone,
|
149 |
max_steps=6,
|
150 |
verbosity_level=1,
|
151 |
grammar=None,
|
|
|
2 |
import datetime
|
3 |
import pytz
|
4 |
import yaml
|
5 |
+
import os
|
6 |
+
import re
|
7 |
+
import numpy as np
|
8 |
+
from typing import List, Optional, Dict, Any
|
9 |
+
import io
|
10 |
from tools.final_answer import FinalAnswerTool
|
11 |
from Gradio_UI import GradioUI
|
12 |
|
|
|
68 |
except Exception as e:
|
69 |
return f"Error fetching time for timezone '{timezone}': {str(e)}"
|
70 |
|
71 |
+
# Simple vector embedding function using basic word frequency
|
72 |
+
def get_embedding(text: str, normalize: bool = True) -> np.ndarray:
|
73 |
+
"""Create a simple bag-of-words embedding for the text"""
|
74 |
+
# Lowercase and clean text
|
75 |
+
text = text.lower()
|
76 |
+
words = re.findall(r'\b\w+\b', text)
|
77 |
+
|
78 |
+
# Create a basic vocabulary (this is very simplified)
|
79 |
+
vocabulary = {}
|
80 |
+
for word in words:
|
81 |
+
if word not in vocabulary:
|
82 |
+
vocabulary[word] = len(vocabulary)
|
83 |
+
|
84 |
+
# Create vector
|
85 |
+
vector = np.zeros(max(1, len(vocabulary)))
|
86 |
+
for word in words:
|
87 |
+
if word in vocabulary:
|
88 |
+
vector[vocabulary[word]] += 1
|
89 |
+
|
90 |
+
# Normalize if requested
|
91 |
+
if normalize and np.sum(vector) > 0:
|
92 |
+
vector = vector / np.sqrt(np.sum(vector ** 2))
|
93 |
+
|
94 |
+
return vector
|
95 |
+
|
96 |
+
def cosine_similarity(a: np.ndarray, b: np.ndarray) -> float:
|
97 |
+
"""Calculate cosine similarity between two vectors"""
|
98 |
+
# Handle zero vectors
|
99 |
+
if np.sum(a) == 0 or np.sum(b) == 0:
|
100 |
+
return 0
|
101 |
+
return np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b))
|
102 |
+
|
103 |
+
def extract_text_from_pdf_bytes(pdf_bytes: bytes) -> str:
|
104 |
+
"""Extract text from PDF bytes"""
|
105 |
+
try:
|
106 |
+
# First try to import PyPDF2
|
107 |
+
try:
|
108 |
+
import PyPDF2
|
109 |
+
except ImportError:
|
110 |
+
return "PDF processing requires PyPDF2 library which is not available."
|
111 |
+
|
112 |
+
with io.BytesIO(pdf_bytes) as pdf_file:
|
113 |
+
pdf_reader = PyPDF2.PdfReader(pdf_file)
|
114 |
+
text = ""
|
115 |
+
for page_num in range(len(pdf_reader.pages)):
|
116 |
+
page = pdf_reader.pages[page_num]
|
117 |
+
text += page.extract_text() + "\n"
|
118 |
+
return text
|
119 |
+
except Exception as e:
|
120 |
+
return f"Error extracting text from PDF: {str(e)}"
|
121 |
+
|
122 |
+
def extract_text_from_pdf(file_path: str) -> str:
|
123 |
+
"""Extract text from PDF file"""
|
124 |
+
try:
|
125 |
+
# First try to import PyPDF2
|
126 |
+
try:
|
127 |
+
import PyPDF2
|
128 |
+
except ImportError:
|
129 |
+
return "PDF processing requires PyPDF2 library which is not available."
|
130 |
+
|
131 |
+
with open(file_path, 'rb') as pdf_file:
|
132 |
+
pdf_reader = PyPDF2.PdfReader(pdf_file)
|
133 |
+
text = ""
|
134 |
+
for page_num in range(len(pdf_reader.pages)):
|
135 |
+
page = pdf_reader.pages[page_num]
|
136 |
+
text += page.extract_text() + "\n"
|
137 |
+
return text
|
138 |
+
except Exception as e:
|
139 |
+
return f"Error extracting text from PDF: {str(e)}"
|
140 |
+
|
141 |
@tool
|
142 |
+
def semantic_search(corpus: str, query: str, top_k: int = 3, file_path: Optional[str] = None) -> str:
|
143 |
+
"""Performs semantic search on a corpus of text or uploaded PDF.
|
144 |
|
145 |
Args:
|
146 |
+
corpus: The text corpus to search within (could be a large text or list of documents).
|
147 |
+
If empty and file_path is provided, will extract text from the PDF.
|
148 |
+
query: The search query.
|
149 |
+
top_k: Number of top results to return.
|
150 |
+
file_path: Optional path to a PDF file to extract text from.
|
151 |
"""
|
152 |
try:
|
153 |
+
final_corpus = corpus
|
154 |
+
|
155 |
+
# Try to handle PDF file if specified
|
156 |
+
if not corpus and file_path:
|
157 |
+
# Check if file exists
|
158 |
+
if os.path.exists(file_path):
|
159 |
+
# Check if this is a PDF by extension
|
160 |
+
if file_path.lower().endswith('.pdf'):
|
161 |
+
pdf_text = extract_text_from_pdf(file_path)
|
162 |
+
if pdf_text.startswith("Error") or pdf_text.startswith("PDF processing requires"):
|
163 |
+
return pdf_text
|
164 |
+
final_corpus = pdf_text
|
165 |
+
else:
|
166 |
+
# If not PDF, try to read as text
|
167 |
+
try:
|
168 |
+
with open(file_path, 'r', encoding='utf-8') as f:
|
169 |
+
final_corpus = f.read()
|
170 |
+
except Exception as e:
|
171 |
+
return f"Error reading file: {str(e)}"
|
172 |
+
else:
|
173 |
+
return f"File not found: {file_path}"
|
174 |
+
|
175 |
+
if not final_corpus:
|
176 |
+
return "Error: No text corpus provided for search."
|
177 |
+
|
178 |
+
# Split corpus into chunks/sentences for searching
|
179 |
+
# This is a simple approach - in a real system you would use a more sophisticated chunking method
|
180 |
+
chunks = re.split(r'(?<=[.!?])\s+', final_corpus)
|
181 |
+
chunks = [chunk.strip() for chunk in chunks if len(chunk.strip()) > 10]
|
182 |
+
|
183 |
+
if not chunks:
|
184 |
+
return "No valid text chunks found in the corpus."
|
185 |
+
|
186 |
+
# Get query embedding
|
187 |
+
query_embedding = get_embedding(query)
|
188 |
+
|
189 |
+
# Get embeddings for each chunk and calculate similarity
|
190 |
+
results = []
|
191 |
+
for i, chunk in enumerate(chunks):
|
192 |
+
chunk_embedding = get_embedding(chunk)
|
193 |
+
similarity = cosine_similarity(query_embedding, chunk_embedding)
|
194 |
+
results.append((i, chunk, similarity))
|
195 |
+
|
196 |
+
# Sort by similarity score (descending)
|
197 |
+
results.sort(key=lambda x: x[2], reverse=True)
|
198 |
+
|
199 |
+
# Format results
|
200 |
+
output = f"Search results for: '{query}'\n\n"
|
201 |
+
|
202 |
+
for i, (chunk_idx, chunk, score) in enumerate(results[:top_k]):
|
203 |
+
# Truncate long chunks for display
|
204 |
+
display_chunk = chunk
|
205 |
+
if len(display_chunk) > 200:
|
206 |
+
display_chunk = display_chunk[:197] + "..."
|
207 |
|
208 |
+
output += f"{i+1}. [Score: {score:.2f}] {display_chunk}\n\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
209 |
|
210 |
+
if not results:
|
211 |
+
output += "No matching results found."
|
212 |
+
|
213 |
+
return output
|
214 |
|
|
|
|
|
|
|
|
|
215 |
except Exception as e:
|
216 |
+
return f"Error performing semantic search: {str(e)}"
|
217 |
+
|
218 |
+
@tool
|
219 |
+
def list_available_tools() -> str:
|
220 |
+
"""Lists all available tools and provides usage examples for each."""
|
221 |
+
tools_documentation = """
|
222 |
+
# Available Tools
|
223 |
+
|
224 |
+
This agent has the following tools available:
|
225 |
+
|
226 |
+
## 1. Text Analyzer
|
227 |
+
|
228 |
+
Analyzes text and provides statistics including word count, character count, unique words count, average word length, and most common words.
|
229 |
+
|
230 |
+
**Example usage:**
|
231 |
+
- "Analyze this text: The quick brown fox jumps over the lazy dog."
|
232 |
+
- "Give me statistics about this paragraph: Lorem ipsum dolor sit amet, consectetur adipiscing elit. Sed do eiusmod tempor incididunt ut labore et dolore magna aliqua."
|
233 |
+
|
234 |
+
## 2. Current Time in Timezone
|
235 |
+
|
236 |
+
Fetches the current local time for a specified timezone.
|
237 |
+
|
238 |
+
**Example usage:**
|
239 |
+
- "What time is it in Tokyo?"
|
240 |
+
- "Get the current time in America/New_York"
|
241 |
+
- "Tell me the time in UTC"
|
242 |
+
|
243 |
+
## 3. Semantic Search
|
244 |
+
|
245 |
+
Performs semantic search on a corpus of text or uploaded PDF document to find the most relevant sections matching a query.
|
246 |
+
|
247 |
+
**Example usage:**
|
248 |
+
- "Search for 'climate change' in this text: Global warming is the long-term heating of Earth's surface observed since the pre-industrial period due to human activities, primarily fossil fuel burning, which increases heat-trapping greenhouse gas levels in Earth's atmosphere."
|
249 |
+
- "If I have uploaded a PDF file called 'research.pdf', search for 'vaccination' in it"
|
250 |
+
- "Find information about 'neural networks' in this text: [your long text here]"
|
251 |
+
|
252 |
+
## How to Use This Agent
|
253 |
+
|
254 |
+
1. Type your request in the chat box below
|
255 |
+
2. The agent will process your request and use the appropriate tool
|
256 |
+
3. Results will be displayed in this conversation area
|
257 |
+
|
258 |
+
For complex tasks, you may need to provide additional context or data. Be as specific as possible in your requests.
|
259 |
+
"""
|
260 |
+
return tools_documentation
|
261 |
|
262 |
# Set up the agent with our tools
|
263 |
final_answer = FinalAnswerTool()
|
|
|
274 |
custom_role_conversions=None,
|
275 |
)
|
276 |
|
277 |
+
# Create agent with our tools (including the new list_available_tools)
|
278 |
agent = CodeAgent(
|
279 |
model=model,
|
280 |
+
tools=[text_analyzer, get_current_time_in_timezone, semantic_search, list_available_tools, final_answer],
|
281 |
max_steps=6,
|
282 |
verbosity_level=1,
|
283 |
grammar=None,
|