Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,69 +1,274 @@
|
|
1 |
-
from smolagents import
|
2 |
-
import datetime
|
3 |
import requests
|
4 |
-
import
|
5 |
-
import
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
-
from Gradio_UI import GradioUI
|
9 |
|
10 |
-
# Below is an example of a tool that does nothing. Amaze us with your creativity !
|
11 |
@tool
|
12 |
-
def
|
13 |
-
|
14 |
-
|
15 |
Args:
|
16 |
-
|
17 |
-
|
|
|
|
|
18 |
"""
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
@tool
|
22 |
-
def
|
23 |
-
"""
|
|
|
24 |
Args:
|
25 |
-
|
|
|
26 |
"""
|
27 |
try:
|
28 |
-
#
|
29 |
-
|
30 |
-
|
31 |
-
local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S")
|
32 |
-
return f"The current local time in {timezone} is: {local_time}"
|
33 |
except Exception as e:
|
34 |
-
return f"Error
|
35 |
|
36 |
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
-
# If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder:
|
40 |
-
# model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud'
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
|
50 |
-
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
-
|
54 |
-
|
|
|
|
|
55 |
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
|
|
1 |
+
from smolagents import tool
|
|
|
2 |
import requests
|
3 |
+
import json
|
4 |
+
import datetime
|
5 |
+
import os
|
6 |
+
import base64
|
7 |
+
from typing import List, Optional, Dict, Any
|
8 |
+
import pandas as pd
|
9 |
+
import matplotlib.pyplot as plt
|
10 |
+
import io
|
11 |
+
|
12 |
+
|
13 |
+
@tool
|
14 |
+
def web_scrape(url: str) -> str:
|
15 |
+
"""Scrapes the content from a specified URL.
|
16 |
+
|
17 |
+
Args:
|
18 |
+
url: The URL to scrape content from.
|
19 |
+
"""
|
20 |
+
try:
|
21 |
+
response = requests.get(url, headers={
|
22 |
+
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36'
|
23 |
+
})
|
24 |
+
response.raise_for_status()
|
25 |
+
return response.text
|
26 |
+
except Exception as e:
|
27 |
+
return f"Error scraping {url}: {str(e)}"
|
28 |
+
|
29 |
+
|
30 |
+
@tool
|
31 |
+
def extract_structured_data(text: str, schema: str) -> str:
|
32 |
+
"""Extracts structured data from text based on a provided schema.
|
33 |
+
|
34 |
+
Args:
|
35 |
+
text: The text to extract data from.
|
36 |
+
schema: JSON schema describing the data structure to extract.
|
37 |
+
"""
|
38 |
+
try:
|
39 |
+
# In a real implementation, you might use regex, NLP, or ML models
|
40 |
+
# This is a placeholder for demonstrating the concept
|
41 |
+
return f"Extracted structured data according to schema: {schema}"
|
42 |
+
except Exception as e:
|
43 |
+
return f"Error extracting structured data: {str(e)}"
|
44 |
+
|
45 |
+
|
46 |
+
@tool
|
47 |
+
def data_visualization(data: str, chart_type: str, title: str = "Data Visualization") -> str:
|
48 |
+
"""Creates a data visualization from structured data.
|
49 |
+
|
50 |
+
Args:
|
51 |
+
data: JSON string or CSV text with the data to visualize.
|
52 |
+
chart_type: Type of chart to create (bar, line, scatter, pie).
|
53 |
+
title: Title for the visualization.
|
54 |
+
"""
|
55 |
+
try:
|
56 |
+
# Parse the input data
|
57 |
+
try:
|
58 |
+
# Try parsing as JSON first
|
59 |
+
data_parsed = json.loads(data)
|
60 |
+
df = pd.DataFrame(data_parsed)
|
61 |
+
except:
|
62 |
+
# If not JSON, try as CSV
|
63 |
+
csv_data = io.StringIO(data)
|
64 |
+
df = pd.DataFrame.from_records(pd.read_csv(csv_data))
|
65 |
+
|
66 |
+
# Create appropriate visualization
|
67 |
+
plt.figure(figsize=(10, 6))
|
68 |
+
|
69 |
+
if chart_type.lower() == 'bar':
|
70 |
+
df.plot(kind='bar')
|
71 |
+
elif chart_type.lower() == 'line':
|
72 |
+
df.plot(kind='line')
|
73 |
+
elif chart_type.lower() == 'scatter':
|
74 |
+
# Assuming first two columns are x and y
|
75 |
+
columns = df.columns
|
76 |
+
if len(columns) >= 2:
|
77 |
+
plt.scatter(df[columns[0]], df[columns[1]])
|
78 |
+
else:
|
79 |
+
return "Need at least two columns for scatter plot"
|
80 |
+
elif chart_type.lower() == 'pie':
|
81 |
+
# Assuming first column is labels, second is values
|
82 |
+
columns = df.columns
|
83 |
+
if len(columns) >= 2:
|
84 |
+
plt.pie(df[columns[1]], labels=df[columns[0]], autopct='%1.1f%%')
|
85 |
+
else:
|
86 |
+
return "Need at least two columns for pie chart"
|
87 |
+
else:
|
88 |
+
return f"Unsupported chart type: {chart_type}"
|
89 |
+
|
90 |
+
plt.title(title)
|
91 |
+
|
92 |
+
# Save to bytes buffer
|
93 |
+
buf = io.BytesIO()
|
94 |
+
plt.savefig(buf, format='png')
|
95 |
+
buf.seek(0)
|
96 |
+
|
97 |
+
# Convert to base64 for embedding in HTML or returning
|
98 |
+
img_str = base64.b64encode(buf.read()).decode('utf-8')
|
99 |
+
|
100 |
+
# Return a reference or small thumbnail
|
101 |
+
return f"Visualization created successfully. Image data (base64): {img_str[:30]}..."
|
102 |
+
except Exception as e:
|
103 |
+
return f"Error creating visualization: {str(e)}"
|
104 |
+
|
105 |
+
|
106 |
+
@tool
|
107 |
+
def code_refactor(code: str, language: str, optimization: str) -> str:
|
108 |
+
"""Refactors code based on specified optimization criteria.
|
109 |
+
|
110 |
+
Args:
|
111 |
+
code: The source code to refactor.
|
112 |
+
language: Programming language of the code.
|
113 |
+
optimization: Type of optimization to perform (performance, readability, security).
|
114 |
+
"""
|
115 |
+
try:
|
116 |
+
# In a real implementation, you'd use language-specific tools or ML models
|
117 |
+
# This is a placeholder for demonstrating the concept
|
118 |
+
if optimization.lower() == 'performance':
|
119 |
+
return f"Code refactored for performance: \n```{language}\n# Performance optimized\n{code}\n```"
|
120 |
+
elif optimization.lower() == 'readability':
|
121 |
+
return f"Code refactored for readability: \n```{language}\n# Readability optimized\n{code}\n```"
|
122 |
+
elif optimization.lower() == 'security':
|
123 |
+
return f"Code refactored for security: \n```{language}\n# Security optimized\n{code}\n```"
|
124 |
+
else:
|
125 |
+
return f"Unsupported optimization type: {optimization}"
|
126 |
+
except Exception as e:
|
127 |
+
return f"Error refactoring code: {str(e)}"
|
128 |
|
|
|
129 |
|
|
|
130 |
@tool
|
131 |
+
def api_interaction(endpoint: str, method: str = "GET", params: Optional[str] = None, headers: Optional[str] = None) -> str:
|
132 |
+
"""Interacts with an API endpoint.
|
133 |
+
|
134 |
Args:
|
135 |
+
endpoint: The API endpoint URL.
|
136 |
+
method: HTTP method (GET, POST, PUT, DELETE).
|
137 |
+
params: JSON string of parameters or data to send.
|
138 |
+
headers: JSON string of headers to include.
|
139 |
"""
|
140 |
+
try:
|
141 |
+
# Parse headers and params if provided
|
142 |
+
headers_dict = json.loads(headers) if headers else {}
|
143 |
+
|
144 |
+
if method.upper() == "GET":
|
145 |
+
params_dict = json.loads(params) if params else {}
|
146 |
+
response = requests.get(endpoint, params=params_dict, headers=headers_dict)
|
147 |
+
elif method.upper() == "POST":
|
148 |
+
data_dict = json.loads(params) if params else {}
|
149 |
+
response = requests.post(endpoint, json=data_dict, headers=headers_dict)
|
150 |
+
elif method.upper() == "PUT":
|
151 |
+
data_dict = json.loads(params) if params else {}
|
152 |
+
response = requests.put(endpoint, json=data_dict, headers=headers_dict)
|
153 |
+
elif method.upper() == "DELETE":
|
154 |
+
response = requests.delete(endpoint, headers=headers_dict)
|
155 |
+
else:
|
156 |
+
return f"Unsupported HTTP method: {method}"
|
157 |
+
|
158 |
+
response.raise_for_status()
|
159 |
+
|
160 |
+
# Try to return JSON if possible, otherwise return text
|
161 |
+
try:
|
162 |
+
return json.dumps(response.json(), indent=2)
|
163 |
+
except:
|
164 |
+
return response.text
|
165 |
+
except Exception as e:
|
166 |
+
return f"Error interacting with API {endpoint}: {str(e)}"
|
167 |
+
|
168 |
|
169 |
@tool
|
170 |
+
def natural_language_query(database_description: str, query: str) -> str:
|
171 |
+
"""Translates a natural language query to structured data operations.
|
172 |
+
|
173 |
Args:
|
174 |
+
database_description: Description of the database schema.
|
175 |
+
query: Natural language query about the data.
|
176 |
"""
|
177 |
try:
|
178 |
+
# In a real implementation, you'd use NLP to SQL or similar technology
|
179 |
+
# This is a placeholder for demonstrating the concept
|
180 |
+
return f"Query translated and executed. Results for: {query}"
|
|
|
|
|
181 |
except Exception as e:
|
182 |
+
return f"Error processing natural language query: {str(e)}"
|
183 |
|
184 |
|
185 |
+
@tool
|
186 |
+
def file_operations(operation: str, file_path: str, content: Optional[str] = None) -> str:
|
187 |
+
"""Performs operations on files.
|
188 |
+
|
189 |
+
Args:
|
190 |
+
operation: The operation to perform (read, write, append, list).
|
191 |
+
file_path: Path to the file or directory.
|
192 |
+
content: Content to write or append (only for write/append operations).
|
193 |
+
"""
|
194 |
+
try:
|
195 |
+
if operation.lower() == 'read':
|
196 |
+
with open(file_path, 'r') as file:
|
197 |
+
return file.read()
|
198 |
+
elif operation.lower() == 'write':
|
199 |
+
if content is None:
|
200 |
+
return "Content must be provided for write operation"
|
201 |
+
with open(file_path, 'w') as file:
|
202 |
+
file.write(content)
|
203 |
+
return f"Content written to {file_path}"
|
204 |
+
elif operation.lower() == 'append':
|
205 |
+
if content is None:
|
206 |
+
return "Content must be provided for append operation"
|
207 |
+
with open(file_path, 'a') as file:
|
208 |
+
file.write(content)
|
209 |
+
return f"Content appended to {file_path}"
|
210 |
+
elif operation.lower() == 'list':
|
211 |
+
if os.path.isdir(file_path):
|
212 |
+
return str(os.listdir(file_path))
|
213 |
+
else:
|
214 |
+
return f"{file_path} is not a directory"
|
215 |
+
else:
|
216 |
+
return f"Unsupported file operation: {operation}"
|
217 |
+
except Exception as e:
|
218 |
+
return f"Error performing file operation: {str(e)}"
|
219 |
|
|
|
|
|
220 |
|
221 |
+
@tool
|
222 |
+
def semantic_search(corpus: str, query: str, top_k: int = 3) -> str:
|
223 |
+
"""Performs semantic search on a corpus of text.
|
224 |
+
|
225 |
+
Args:
|
226 |
+
corpus: The text corpus to search within (could be a large text or list of documents).
|
227 |
+
query: The search query.
|
228 |
+
top_k: Number of top results to return.
|
229 |
+
"""
|
230 |
+
try:
|
231 |
+
# In a real implementation, you'd use embedding models and vector similarity
|
232 |
+
# This is a placeholder for demonstrating the concept
|
233 |
+
results = [
|
234 |
+
{"text": f"Result {i} for query: {query}", "score": (top_k - i) / top_k}
|
235 |
+
for i in range(1, top_k + 1)
|
236 |
+
]
|
237 |
+
return json.dumps(results, indent=2)
|
238 |
+
except Exception as e:
|
239 |
+
return f"Error performing semantic search: {str(e)}"
|
240 |
|
241 |
|
242 |
+
@tool
|
243 |
+
def weather_forecast(location: str) -> str:
|
244 |
+
"""Fetches weather forecast for a specified location.
|
245 |
+
|
246 |
+
Args:
|
247 |
+
location: The location to get weather forecast for (city name or coordinates).
|
248 |
+
"""
|
249 |
+
try:
|
250 |
+
# In a real implementation, you'd connect to a weather API
|
251 |
+
# This is a placeholder for demonstrating the concept
|
252 |
+
return f"Weather forecast for {location}: Sunny with a chance of AI"
|
253 |
+
except Exception as e:
|
254 |
+
return f"Error fetching weather forecast: {str(e)}"
|
255 |
|
256 |
+
|
257 |
+
@tool
|
258 |
+
def task_scheduler(task: str, schedule_time: str, priority: int = 1) -> str:
|
259 |
+
"""Schedules a task to be performed at a specified time.
|
260 |
|
261 |
+
Args:
|
262 |
+
task: Description of the task to be scheduled.
|
263 |
+
schedule_time: Time to schedule the task (ISO format).
|
264 |
+
priority: Priority level of the task (1-5, where 1 is highest).
|
265 |
+
"""
|
266 |
+
try:
|
267 |
+
# Parse the schedule time
|
268 |
+
schedule_datetime = datetime.datetime.fromisoformat(schedule_time)
|
269 |
+
|
270 |
+
# In a real implementation, you'd connect to a scheduling system
|
271 |
+
# This is a placeholder for demonstrating the concept
|
272 |
+
return f"Task '{task}' scheduled for {schedule_datetime} with priority {priority}"
|
273 |
+
except Exception as e:
|
274 |
+
return f"Error scheduling task: {str(e)}"
|