Alaaeldin commited on
Commit
9d79421
·
verified ·
1 Parent(s): 11883af

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +38 -0
app.py ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from transformers import pipeline
3
+ import os
4
+
5
+ # Load the Hugging Face access token from secrets
6
+ access_token = os.getenv("HF_TOKEN") # Token is securely retrieved from secrets
7
+
8
+ # Model name
9
+ MODEL_NAME = "Alaaeldin/pubmedBERT-demo"
10
+
11
+ @st.cache_resource
12
+ def load_pipeline():
13
+ return pipeline("question-answering", model=MODEL_NAME, tokenizer=MODEL_NAME, use_auth_token=access_token)
14
+
15
+ # Load the pipeline
16
+ qa_pipeline = load_pipeline()
17
+
18
+ # Streamlit app UI
19
+ st.title("PubMed BERT Q&A App")
20
+ st.write("Ask questions based on biomedical content!")
21
+
22
+ # User inputs
23
+ context = st.text_area("Enter the biomedical context (e.g., PubMed abstract):", height=200)
24
+ question = st.text_input("Enter your question:")
25
+
26
+ # Button to get the answer
27
+ if st.button("Get Answer"):
28
+ if context.strip() and question.strip():
29
+ with st.spinner("Finding the answer..."):
30
+ result = qa_pipeline(question=question, context=context)
31
+ st.success(f"Answer: {result['answer']}")
32
+ st.write(f"Confidence: {result['score']:.2f}")
33
+ else:
34
+ st.warning("Please provide both context and a question.")
35
+
36
+ # Footer
37
+ st.markdown("---")
38
+ st.markdown("Powered by **PubMed BERT** fine-tuned by [Alaaeldin](https://huggingface.co/Alaaeldin).")