File size: 3,788 Bytes
83f44b7
 
0a2541c
547153c
0a2541c
83f44b7
 
 
 
 
 
13ce723
014edc2
83f44b7
 
 
 
 
 
 
 
 
 
 
 
 
 
13ce723
83f44b7
014edc2
 
 
83f44b7
 
 
 
 
 
547153c
 
 
 
 
 
 
 
 
 
 
 
 
 
83f44b7
 
 
 
547153c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d683a81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13ce723
d683a81
 
 
 
 
 
 
 
 
 
 
 
547153c
13ce723
d683a81
 
 
 
 
 
 
 
 
 
 
 
 
83f44b7
13ce723
83f44b7
 
 
0a2541c
13ce723
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
import gradio as gr
import re

# Check if GPU is available
device = "cuda" if torch.cuda.is_available() else "cpu"

# Load the model and tokenizer with GPU optimizations
model = AutoModelForCausalLM.from_pretrained(
    "AlanYky/phi-3.5_tweets_instruct",
    torch_dtype=torch.float32,
    trust_remote_code=True,
)

tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3.5-mini-instruct")

# Define the pipeline with device optimization
pipe = pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    device=0 if device == "cuda" else -1  # Set device for pipeline
)

# Define generation arguments
generation_args = {
    "max_new_tokens": 70,
    "return_full_text": False,
    "temperature": 0.7,
    "top_k": 20,
    "top_p": 0.8,
    "repetition_penalty": 1.2,
    "do_sample": True,
}


# Function for tweet generation
def generate_tweet(tweet_idea):
    max_length = 50  # Set a maximum input length
    if len(tweet_idea) > max_length:
        return f"Error: Tweet idea exceeds the maximum allowed length of {max_length} characters."

    prompt = f"Could you generate a tweet about {tweet_idea}?"
    messages = [{"role": "user", "content": prompt}]
    output = pipe(messages, **generation_args)
    return clean_tweet(output[0]['generated_text'])


def generate_tweet_with_rag(tweet_idea):
    prompt = f"Could you generate a tweet about {tweet_idea}?"
    messages = [{"role": "user", "content": prompt}]
    output = pipe(messages, **generation_args)
    return output[0]['generated_text']


def clean_tweet(tweet):
    # Remove trailing sequences of non-ASCII characters (like `����������������`)
    cleaned_tweet = tweet.replace("�", "")

    cleaned_tweet = re.sub(r"\(\)", "", cleaned_tweet)

    # change more than one dot to one dot
    cleaned_tweet = re.sub(r"\.{4,}", "...", cleaned_tweet)

    # change more than two question marks to two question marks
    cleaned_tweet = re.sub(r"\?{4,}", "???", cleaned_tweet)

    # change more than two ! to two !
    cleaned_tweet = re.sub(r"!{4,}", "!!!", cleaned_tweet)

    # Remove repeated double quotes at the end
    cleaned_tweet = re.sub(r'"+$', '', cleaned_tweet)

    return cleaned_tweet.strip()

custom_css = """
#header {
    text-align: center;
    margin-top: 20px;
}
#input-box, #output-box {
    margin: 0 auto;
    width: 80%;
}
#generate-button {
    margin: 10px auto;
    display: block;
}
"""


with gr.Blocks(css=custom_css) as demo:
    # Add a title with the X.com logo
    gr.Markdown(
        """
        <div id="header">
            <img src="https://upload.wikimedia.org/wikipedia/commons/thumb/e/e3/X.com_logo.svg/1024px-X.com_logo.svg.png" 
                 alt="X.com Logo" width="100">
            <h1 style="font-size: 2.5em; margin: 0;">Tweet Generator</h1>
            <p style="font-size: 1.2em; color: gray;">
                Powered by <b>AlanYky/phi-3.5_tweets_instruct</b>
            </p>
        </div>
        """
    )

    # Center the input and output components
    instruction_input = gr.Textbox(
        label="Tweet Idea",
        placeholder="Enter your tweet idea (It can be a topic, hashtag, sentence, or any format)...",
        lines=2,
        elem_id="input-box"
    )
    generate_button = gr.Button("Generate", elem_id="generate-button")
    output_box = gr.Textbox(
        label="Generated Tweet",
        placeholder="Your tweet will appear here.",
        lines=3,
        elem_id="output-box"
    )

    # Connect the button to the generate function
    generate_button.click(generate_tweet, inputs=instruction_input, outputs=output_box)

print("Model loaded on:", next(model.parameters()).device)

demo.launch()