Spaces:
Runtime error
Runtime error
File size: 3,788 Bytes
83f44b7 0a2541c 547153c 0a2541c 83f44b7 13ce723 014edc2 83f44b7 13ce723 83f44b7 014edc2 83f44b7 547153c 83f44b7 547153c d683a81 13ce723 d683a81 547153c 13ce723 d683a81 83f44b7 13ce723 83f44b7 0a2541c 13ce723 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 |
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
import gradio as gr
import re
# Check if GPU is available
device = "cuda" if torch.cuda.is_available() else "cpu"
# Load the model and tokenizer with GPU optimizations
model = AutoModelForCausalLM.from_pretrained(
"AlanYky/phi-3.5_tweets_instruct",
torch_dtype=torch.float32,
trust_remote_code=True,
)
tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3.5-mini-instruct")
# Define the pipeline with device optimization
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
device=0 if device == "cuda" else -1 # Set device for pipeline
)
# Define generation arguments
generation_args = {
"max_new_tokens": 70,
"return_full_text": False,
"temperature": 0.7,
"top_k": 20,
"top_p": 0.8,
"repetition_penalty": 1.2,
"do_sample": True,
}
# Function for tweet generation
def generate_tweet(tweet_idea):
max_length = 50 # Set a maximum input length
if len(tweet_idea) > max_length:
return f"Error: Tweet idea exceeds the maximum allowed length of {max_length} characters."
prompt = f"Could you generate a tweet about {tweet_idea}?"
messages = [{"role": "user", "content": prompt}]
output = pipe(messages, **generation_args)
return clean_tweet(output[0]['generated_text'])
def generate_tweet_with_rag(tweet_idea):
prompt = f"Could you generate a tweet about {tweet_idea}?"
messages = [{"role": "user", "content": prompt}]
output = pipe(messages, **generation_args)
return output[0]['generated_text']
def clean_tweet(tweet):
# Remove trailing sequences of non-ASCII characters (like `����������������`)
cleaned_tweet = tweet.replace("�", "")
cleaned_tweet = re.sub(r"\(\)", "", cleaned_tweet)
# change more than one dot to one dot
cleaned_tweet = re.sub(r"\.{4,}", "...", cleaned_tweet)
# change more than two question marks to two question marks
cleaned_tweet = re.sub(r"\?{4,}", "???", cleaned_tweet)
# change more than two ! to two !
cleaned_tweet = re.sub(r"!{4,}", "!!!", cleaned_tweet)
# Remove repeated double quotes at the end
cleaned_tweet = re.sub(r'"+$', '', cleaned_tweet)
return cleaned_tweet.strip()
custom_css = """
#header {
text-align: center;
margin-top: 20px;
}
#input-box, #output-box {
margin: 0 auto;
width: 80%;
}
#generate-button {
margin: 10px auto;
display: block;
}
"""
with gr.Blocks(css=custom_css) as demo:
# Add a title with the X.com logo
gr.Markdown(
"""
<div id="header">
<img src="https://upload.wikimedia.org/wikipedia/commons/thumb/e/e3/X.com_logo.svg/1024px-X.com_logo.svg.png"
alt="X.com Logo" width="100">
<h1 style="font-size: 2.5em; margin: 0;">Tweet Generator</h1>
<p style="font-size: 1.2em; color: gray;">
Powered by <b>AlanYky/phi-3.5_tweets_instruct</b>
</p>
</div>
"""
)
# Center the input and output components
instruction_input = gr.Textbox(
label="Tweet Idea",
placeholder="Enter your tweet idea (It can be a topic, hashtag, sentence, or any format)...",
lines=2,
elem_id="input-box"
)
generate_button = gr.Button("Generate", elem_id="generate-button")
output_box = gr.Textbox(
label="Generated Tweet",
placeholder="Your tweet will appear here.",
lines=3,
elem_id="output-box"
)
# Connect the button to the generate function
generate_button.click(generate_tweet, inputs=instruction_input, outputs=output_box)
print("Model loaded on:", next(model.parameters()).device)
demo.launch() |