import gradio as gr from fastai.vision.all import * # Define the main prediction function: learn = load_learner('./model_params/planet_cls_1.pkl') labels = learn.dls.vocab def planet_classifier_predict(img) -> str: img = PILImage.create(img) _, _, probs = learn.predict(img) return {labels[i]: float(probs[i]) for i in range(len(labels))} if __name__ == "__main__": # General web app params: title = "Planet Classifier Demo" description = "Let's say you want to classify a picture if it is one of the 9 planets: \ Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, and Neptune. \ You can do it using this awesome tool!!!! Try it :)" article = "
" examples = ['./example_images/saturn.jpeg', './example_images/car.jpeg'] interpretation = 'default' enable_queue = True inputs = "image" outputs = "label" # The main app interface: gr.Interface( fn=planet_classifier_predict, inputs=inputs, outputs=outputs, title=title, description=description, article=article, examples=examples, ).launch()