|
import os |
|
|
|
import cv2 |
|
import gradio as gr |
|
from gradio_client import Client, handle_file |
|
|
|
|
|
read_key = os.getenv('HUGGINGFACE_TOKEN') |
|
client = Client("Albert-NHWang/Depth-Anywhere", hf_token=read_key) |
|
|
|
|
|
def get_example(): |
|
case = [ |
|
[ |
|
'examples/small_nthu_assembly.jpg' |
|
], |
|
[ |
|
'examples/small_Luca_Biada_flickr_2.jpg' |
|
], |
|
[ |
|
'examples/small_Dominic_Alves_flickr_panohead_test.jpg' |
|
], |
|
[ |
|
'examples/small_Luca_Biada_flickr.jpg' |
|
], |
|
] |
|
return case |
|
|
|
def depth(path): |
|
depth_path = client.predict(handle_file(path), api_name='/process_image') |
|
return depth_path |
|
|
|
intro = """ |
|
<div style="text-align:center"> |
|
<h1 style="font-weight: 1400; text-align: center; margin-bottom: 7px;"> |
|
Depth Anywhere: Enhancing 360 Monocular Depth Estimation via Perspective Distillation and Unlabeled Data Augmentation |
|
</h1> |
|
<span>[<a target="_blank" href="https://albert100121.github.io/Depth-Anywhere/">Project page</a>], [<a target="_blank" href="http://arxiv.org/abs/2406.12849">Paper</a>], [<a target="_blank" href="https://huggingface.co/papers/2406.12849">Hugging Face Daily Paper</a>]</span> |
|
<div style="display:flex; justify-content: center;margin-top: 0.5em">Please test with browsers other then Safari, and avoid using incognito window due to unsolved gradio bug!</div> |
|
</div> |
|
""" |
|
footnote = """ |
|
<div style="display:flex; justify-content: left;margin-top: 0.5em"> |
|
Dominic Alves, https://www.flickr.com/photos/dominicspics/28296671029/, CC BY 2.0 DEED <br> |
|
Luca Biada, https://www.flickr.com/photos/pedroscreamerovsky/6873256488/, CC BY 2.0 DEED <br> |
|
Luca Biada, https://www.flickr.com/photos/pedroscreamerovsky/6798474782/, CC BY 2.0 DEED</div> |
|
""" |
|
|
|
|
|
with gr.Blocks(css="style.css") as demo: |
|
gr.HTML(intro) |
|
with gr.Row(): |
|
input_image = gr.File(type="filepath") |
|
output_rgb = gr.Image(label="Loaded Image", type="filepath") |
|
with gr.Row(): |
|
load_button = gr.Button("Load RGB!", visible=True) |
|
|
|
load_button.click(fn = lambda x: x, |
|
inputs = [input_image], |
|
outputs = [output_rgb] |
|
) |
|
|
|
with gr.Row(): |
|
output_image = gr.Image(label="Output Depth", type="filepath") |
|
|
|
with gr.Row(): |
|
run_button = gr.Button("Estimate Depth!", visible=True) |
|
|
|
run_button.click(fn = depth, |
|
inputs = [input_image], |
|
outputs = [output_image] |
|
) |
|
|
|
gr.Examples( |
|
fn=lambda x:x, |
|
inputs=[input_image], |
|
outputs=[output_rgb], |
|
examples=get_example(), |
|
run_on_click=True, |
|
cache_examples=False) |
|
|
|
gr.HTML(footnote) |
|
demo.queue() |
|
demo.launch() |
|
|