Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from sentence_transformers import SentenceTransformer
|
3 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
4 |
+
|
5 |
+
# Set page title
|
6 |
+
st.set_page_config(page_title='Sentence Similarity Demo')
|
7 |
+
|
8 |
+
# Create a title for the app
|
9 |
+
st.title('Sentence Similarity Demo')
|
10 |
+
|
11 |
+
# Input sentences
|
12 |
+
sentence1 = st.text_input('Enter the first sentence:', 'This is an example sentence')
|
13 |
+
sentence2 = st.text_input('Enter the second sentence:', 'Each sentence is converted')
|
14 |
+
|
15 |
+
# Load the Sentence Transformer model
|
16 |
+
@st.cache_resource
|
17 |
+
def load_model():
|
18 |
+
return SentenceTransformer('sentence-transformers/sentence-t5-base')
|
19 |
+
|
20 |
+
model = load_model()
|
21 |
+
|
22 |
+
# Calculate embeddings
|
23 |
+
embeddings = model.encode([sentence1, sentence2])
|
24 |
+
|
25 |
+
# Calculate cosine similarity
|
26 |
+
similarity = cosine_similarity([embeddings[0]], [embeddings[1]])[0][0]
|
27 |
+
|
28 |
+
# Display the result
|
29 |
+
st.write(f'Cosine Similarity: {similarity:.4f}')
|