Spaces:
Sleeping
Sleeping
File size: 2,483 Bytes
fbfc245 50442e6 fbfc245 b43640d fbfc245 6b4d656 b43640d d0fc699 fbfc245 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
import gradio as gr
from langchain_community.llms import HuggingFaceEndpoint
from langchain_community.document_loaders import WebBaseLoader, PyPDFLoader
from langchain_community.vectorstores import Chroma
from langchain_community import embeddings
from langchain_community.chat_models import ChatOllama
from langchain_core.runnables import RunnablePassthrough
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain.output_parsers import PydanticOutputParser
from langchain.text_splitter import CharacterTextSplitter
import os
def process_input(urls, question):
# get a token: https://huggingface.co/docs/api-inference/quicktour#get-your-api-token
from getpass import getpass
HUGGINGFACEHUB_API_TOKEN = getpass()
os.environ['HUGGINGFACEHUB_API_TOKEN'] = 'HUGGINGFACEHUB_API_TOKEN'
repo_id = "mistralai/Mistral-7B-Instruct-v0.2"
model_local = HuggingFaceEndpoint(repo_id=repo_id, max_length=128, temperature=0.5, token=HUGGINGFACEHUB_API_TOKEN
)
# Convert string of URLs to list
urls_list = urls.split("\n")
docs = [WebBaseLoader(url).load() for url in urls_list]
docs_list = [item for sublist in docs for item in sublist]
text_splitter = CharacterTextSplitter.from_tiktoken_encoder(chunk_size=7500, chunk_overlap=100)
doc_splits = text_splitter.split_documents(docs_list)
vectorstore = Chroma.from_documents(
documents=doc_splits,
collection_name="rag-chroma",
embedding=embeddings.ollama.OllamaEmbeddings(model='nomic-embed-text'),
)
retriever = vectorstore.as_retriever()
after_rag_template = """Answer the question based only on the following context:
{context}
Question: {question}
"""
after_rag_prompt = ChatPromptTemplate.from_template(after_rag_template)
after_rag_chain = (
{"context": retriever, "question": RunnablePassthrough()}
| after_rag_prompt
| model_local
| StrOutputParser()
)
return after_rag_chain.invoke(question)
# Define Gradio interface
iface = gr.Interface(fn=process_input,
inputs=[gr.Textbox(label="Enter URLs separated by new lines"), gr.Textbox(label="Question")],
# server_name
outputs="text",
title="Document Query with Ollama",
description="Enter URLs and a question to query the documents.")
iface.launch()
|