|
import gradio as gr |
|
import numpy as np |
|
import spaces |
|
import torch |
|
import random |
|
import time |
|
from PIL import Image |
|
from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, FluxTransformer2DModel |
|
from transformers import CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast, AutoProcessor, pipeline |
|
from huggingface_hub import hf_hub_download |
|
from gradio_client import Client, handle_file |
|
import os |
|
import subprocess |
|
|
|
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) |
|
|
|
dtype = torch.bfloat16 |
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
|
|
hf_token = os.getenv('waffles') |
|
|
|
|
|
if not hf_token: |
|
raise ValueError("Hugging Face API token not found. Please set the 'waffles' environment variable.") |
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
MAX_IMAGE_SIZE = 2048 |
|
|
|
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16, revision="refs/pr/1", token=hf_token).to(device) |
|
|
|
@spaces.GPU(duration=60) |
|
def infer(prompt, seed=0, randomize_seed=True, width=640, height=1024, guidance_scale=0.0, num_inference_steps=5, lora_model="AlekseyCalvin/RCA_Agitprop_Manufactory", progress=gr.Progress(track_tqdm=True)): |
|
global pipe |
|
|
|
|
|
if lora_model: |
|
try: |
|
pipe.load_lora_weights(lora_model) |
|
except Exception as e: |
|
return None, seed, f"Failed to load LoRA model: {str(e)}" |
|
|
|
if randomize_seed: |
|
seed = random.randint(0, MAX_SEED) |
|
generator = torch.Generator().manual_seed(seed) |
|
|
|
try: |
|
image = pipe( |
|
prompt=prompt, |
|
width=width, |
|
height=height, |
|
num_inference_steps=num_inference_steps, |
|
generator=generator, |
|
guidance_scale=guidance_scale |
|
).images[0] |
|
|
|
|
|
if lora_model: |
|
pipe.unload_lora_weights() |
|
|
|
return image, prompt, seed, "Image generated successfully." |
|
except Exception as e: |
|
return None, seed, f"Error during image generation: {str(e)}" |
|
|
|
|
|
return image, prompt, seed |
|
|
|
|
|
examples = [ |
|
"RCA style communist party poster with the words Ready for REVOLUTION? in large black consistent constructivist font alongside a red Soviet hammer and a red Soviet sickle over the background of planet earth, over the North American continent", |
|
] |
|
|
|
custom_css = """ |
|
#col-container { |
|
margin: 0 auto; |
|
max-width: 520px; |
|
} |
|
.input-group, .output-group { |
|
border: 1px solid #eb3109; |
|
border-radius: 10px; |
|
padding: 20px; |
|
margin-bottom: 20px; |
|
background-color: #f9f9f9; |
|
} |
|
.submit-btn { |
|
background-color: #2980b9 !important; |
|
color: white !important; |
|
} |
|
.submit-btn:hover { |
|
background-color: #3498db !important; |
|
} |
|
""" |
|
|
|
css=""" |
|
#col-container { |
|
margin: 0 auto; |
|
max-width: 520px; |
|
} |
|
""" |
|
|
|
with gr.Blocks(css=custom_css, theme=gr.themes.Soft(primary_hue="red", secondary_hue="gray")) as demo: |
|
|
|
with gr.Column(elem_id="col-container"): |
|
gr.Markdown(f"""# RCA Agitprop Manufactory: pre-phrase prompts with 'RCA style' to activate custom model """) |
|
|
|
with gr.Row(): |
|
|
|
prompt = gr.Text( |
|
label="Prompt", |
|
show_label=False, |
|
max_lines=2, |
|
placeholder="RCA style communist poster of ", |
|
container=False, |
|
) |
|
|
|
run_button = gr.Button("Run", scale=0) |
|
|
|
output_image = gr.Image(label="Result", elem_id="gallery", show_label=False) |
|
|
|
with gr.Accordion("Advanced Settings", open=True): |
|
|
|
seed = gr.Slider( |
|
label="Seed", |
|
minimum=0, |
|
maximum=MAX_SEED, |
|
step=1, |
|
value=0, |
|
) |
|
|
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) |
|
|
|
with gr.Row(): |
|
|
|
width = gr.Slider( |
|
label="Width", |
|
minimum=256, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=32, |
|
value=640, |
|
) |
|
|
|
height = gr.Slider( |
|
label="Height", |
|
minimum=256, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=32, |
|
value=1024, |
|
) |
|
|
|
with gr.Row(): |
|
|
|
|
|
num_inference_steps = gr.Slider( |
|
label="Number of inference steps", |
|
minimum=1, |
|
maximum=50, |
|
step=1, |
|
value=5, |
|
) |
|
|
|
gr.Examples( |
|
examples = examples, |
|
fn = infer, |
|
inputs = [prompt], |
|
outputs = [output_image, seed], |
|
cache_examples="lazy" |
|
) |
|
|
|
gr.on( |
|
triggers=[run_button.click, prompt.submit], |
|
fn = infer, |
|
inputs = [prompt, seed, randomize_seed, width, height, num_inference_steps], |
|
outputs = [output_image, seed] |
|
) |
|
|
|
demo.launch(debug=True) |