Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import json | |
import logging | |
import torch | |
from PIL import Image | |
import spaces | |
from diffusers import DiffusionPipeline | |
import copy | |
import random | |
import time | |
from huggingface_hub import hf_hub_download | |
from accelerate.utils import set_module_tensor_to_device, compute_module_sizes | |
from accelerate import init_empty_weights | |
from convert_nf4_flux import replace_with_bnb_linear, create_quantized_param, check_quantized_param | |
from diffusers import FluxTransformer2DModel, FluxPipeline | |
import safetensors.torch | |
import gc | |
import torch | |
# Set dtype and check for float8 support | |
dtype = torch.bfloat16 | |
is_torch_e4m3fn_available = hasattr(torch, "float8_e4m3fn") | |
ckpt_path = hf_hub_download("ABDALLALSWAITI/Maxwell", filename="diffusion_pytorch_model.safetensors") | |
original_state_dict = safetensors.torch.load_file(ckpt_path) | |
with init_empty_weights(): | |
config = FluxTransformer2DModel.load_config("ABDALLALSWAITI/Maxwell") | |
model = FluxTransformer2DModel.from_config(config).to(dtype) | |
expected_state_dict_keys = list(model.state_dict().keys()) | |
# Load the state dict into the quantized model | |
for param_name, param in original_state_dict.items(): | |
if param_name not in expected_state_dict_keys: | |
continue | |
is_param_float8_e4m3fn = is_torch_e4m3fn_available and param.dtype == torch.float8_e4m3fn | |
if torch.is_floating_point(param) and not is_param_float8_e4m3fn: | |
param = param.to(dtype) | |
if not check_quantized_param(model, param_name): | |
set_module_tensor_to_device(model, param_name, device=0, value=param) | |
else: | |
create_quantized_param( | |
model, param, param_name, target_device=0, state_dict=original_state_dict, pre_quantized=True | |
) | |
# Clean up | |
del original_state_dict | |
gc.collect() | |
# Print model size | |
print(compute_module_sizes(model)[""] / 1024 / 1204) | |
pipe = FluxPipeline.from_pretrained("black-forest-labs/flux.1-dev", transformer=model, torch_dtype=dtype) | |
pipe.enable_model_cpu_offload() | |
# Load LoRAs from JSON file | |
with open('loras.json', 'r') as f: | |
loras = json.load(f) | |
MAX_SEED = 2**32-1 | |
class calculateDuration: | |
def __init__(self, activity_name=""): | |
self.activity_name = activity_name | |
def __enter__(self): | |
self.start_time = time.time() | |
return self | |
def __exit__(self, exc_type, exc_value, traceback): | |
self.end_time = time.time() | |
self.elapsed_time = self.end_time - self.start_time | |
if self.activity_name: | |
print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds") | |
else: | |
print(f"Elapsed time: {self.elapsed_time:.6f} seconds") | |
def update_selection(evt: gr.SelectData, width, height): | |
selected_lora = loras[evt.index] | |
new_placeholder = f"Type a prompt for {selected_lora['title']}" | |
lora_repo = selected_lora["repo"] | |
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨" | |
if "aspect" in selected_lora: | |
if selected_lora["aspect"] == "portrait": | |
width = 768 | |
height = 1024 | |
elif selected_lora["aspect"] == "landscape": | |
width = 1024 | |
height = 768 | |
return ( | |
gr.update(placeholder=new_placeholder), | |
updated_text, | |
evt.index, | |
width, | |
height, | |
) | |
def generate_image(prompt, trigger_word, steps, seed, cfg_scale, width, height, lora_scale, progress): | |
pipe.to("cuda") | |
generator = torch.Generator(device="cuda").manual_seed(seed) | |
with calculateDuration("Generating image"): | |
# Generate image | |
image = pipe( | |
prompt=f"{prompt} {trigger_word}", | |
num_inference_steps=steps, | |
guidance_scale=cfg_scale, | |
width=width, | |
height=height, | |
generator=generator, | |
joint_attention_kwargs={"scale": lora_scale}, | |
).images[0] | |
return image | |
def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)): | |
if selected_index is None: | |
raise gr.Error("You must select a LoRA before proceeding.") | |
selected_lora = loras[selected_index] | |
lora_path = selected_lora["repo"] | |
trigger_word = selected_lora["trigger_word"] | |
# Load LoRA weights | |
with calculateDuration(f"Loading LoRA weights for {selected_lora['title']}"): | |
if "weights" in selected_lora: | |
pipe.load_lora_weights(lora_path, weight_name=selected_lora["weights"]) | |
else: | |
pipe.load_lora_weights(lora_path) | |
# Set random seed for reproducibility | |
with calculateDuration("Randomizing seed"): | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
image = generate_image(prompt, trigger_word, steps, seed, cfg_scale, width, height, lora_scale, progress) | |
pipe.to("cpu") | |
pipe.unload_lora_weights() | |
return image, seed | |
run_lora.zerogpu = True | |
css = ''' | |
#gen_btn{height: 100%} | |
#title{text-align: center} | |
#title h1{font-size: 3em; display:inline-flex; align-items:center} | |
#title img{width: 100px; margin-right: 0.5em} | |
#gallery .grid-wrap{height: 10vh} | |
''' | |
with gr.Blocks(theme=gr.themes.Soft(), css=css) as app: | |
title = gr.HTML( | |
"""<h1><img src="https://huggingface.co/spaces/multimodalart/flux-lora-the-explorer/resolve/main/flux_lora.png" alt="LoRA"> SOONfactory </h1>""", | |
elem_id="title", | |
) | |
# Info blob stating what the app is running | |
info_blob = gr.HTML( | |
"""<div id="info_blob"> Activist & Futurealist LoRa-stocked Img Manufactory (on Flux Merged)</div>""" | |
) | |
# Info blob stating what the app is running | |
info_blob = gr.HTML( | |
"""<div id="info_blob">Prephrase prompts w/: 1.RCA style 2. HST style autochrome 3.TOK hybrid 4.2004 photo 5.HST style 6.LEN Vladimir Lenin 7.TOK portra 8.HST portrait 9.flmft 10.HST in Peterhof 11.photo 12.pficonics 13.wh3r3sw4ld0 14.retrofuturism 15.vintage cover </div>""" | |
) | |
selected_index = gr.State(None) | |
with gr.Row(): | |
with gr.Column(scale=3): | |
prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Select LoRa/Style & type prompt!") | |
with gr.Column(scale=1, elem_id="gen_column"): | |
generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn") | |
with gr.Row(): | |
with gr.Column(scale=3): | |
selected_info = gr.Markdown("") | |
gallery = gr.Gallery( | |
[(item["image"], item["title"]) for item in loras], | |
label="LoRA Inventory", | |
allow_preview=False, | |
columns=3, | |
elem_id="gallery" | |
) | |
with gr.Column(scale=4): | |
result = gr.Image(label="Generated Image") | |
with gr.Row(): | |
with gr.Accordion("Advanced Settings", open=True): | |
with gr.Column(): | |
with gr.Row(): | |
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=1, value=3) | |
steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=6) | |
with gr.Row(): | |
width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=768) | |
height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=768) | |
with gr.Row(): | |
randomize_seed = gr.Checkbox(True, label="Randomize seed") | |
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True) | |
lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=1, step=0.01, value=0.95) | |
gallery.select( | |
update_selection, | |
inputs=[width, height], | |
outputs=[prompt, selected_info, selected_index, width, height] | |
) | |
gr.on( | |
triggers=[generate_button.click, prompt.submit], | |
fn=run_lora, | |
inputs=[prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale], | |
outputs=[result, seed] | |
) | |
app.queue(default_concurrency_limit=2).launch(show_error=True) | |
app.launch() | |