AlekseyCalvin commited on
Commit
0153bb5
1 Parent(s): b203bc9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -3
app.py CHANGED
@@ -33,12 +33,12 @@ if clipmodel == "long":
33
 
34
  torch.backends.cuda.matmul.allow_tf32 = True
35
 
36
- clip_model = CLIPModel.from_pretrained(model_id, torch_dtype=torch.bfloat16, config=config).to(device)
37
- clip_processor = CLIPProcessor.from_pretrained(model_id, padding="max_length", max_length=maxtokens, return_tensors="pt", truncation=True)
38
  config.text_config.max_position_embeddings = 248
39
 
40
 
41
- pipe = FluxPipeline.from_pretrained("AlekseyCalvin/HistoricColorSoonr_v2_FluxSchnell_Diffusers", torch_dtype=torch.bfloat16)
42
  pipe.to(device="cuda", dtype=torch.bfloat16)
43
 
44
  pipe.tokenizer = clip_processor.tokenizer
@@ -91,6 +91,14 @@ def update_selection(evt: gr.SelectData, width, height):
91
  )
92
 
93
  @spaces.GPU(duration=70)
 
 
 
 
 
 
 
 
94
  def generate_image(prompt, trigger_word, steps, seed, cfg_scale, width, height, lora_scale, progress):
95
  pipe.to("cuda")
96
  generator = torch.Generator(device="cuda").manual_seed(seed)
 
33
 
34
  torch.backends.cuda.matmul.allow_tf32 = True
35
 
36
+ clip_model = CLIPModel.from_pretrained(model_id, torch_dtype=torch.bfloat16, config=config, ignore_mismatched_sizes=True).to(device)
37
+ clip_processor = CLIPProcessor.from_pretrained(model_id, padding="max_length", max_length=maxtokens, ignore_mismatched_sizes=True, return_tensors="pt", truncation=True)
38
  config.text_config.max_position_embeddings = 248
39
 
40
 
41
+ pipe = FluxPipeline.from_pretrained("AlekseyCalvin/HistoricColorSoonr_v2_FluxSchnell_Diffusers", ignore_mismatched_sizes=True, torch_dtype=torch.bfloat16)
42
  pipe.to(device="cuda", dtype=torch.bfloat16)
43
 
44
  pipe.tokenizer = clip_processor.tokenizer
 
91
  )
92
 
93
  @spaces.GPU(duration=70)
94
+ pipe.vae.enable_slicing()
95
+ pipe.vae.enable_tiling()
96
+
97
+ # Just to look at the tokens / confirm settings:
98
+ tokens = clip_processor(
99
+ [prompt], padding="max_length", max_length=maxtokens, return_tensors="pt", truncation=True
100
+ )
101
+
102
  def generate_image(prompt, trigger_word, steps, seed, cfg_scale, width, height, lora_scale, progress):
103
  pipe.to("cuda")
104
  generator = torch.Generator(device="cuda").manual_seed(seed)