Spaces:
Runtime error
Runtime error
import matplotlib | |
matplotlib.use('Agg') | |
import os, sys | |
import yaml | |
from argparse import ArgumentParser | |
from time import gmtime, strftime | |
from shutil import copy | |
from frames_dataset import FramesDataset | |
from modules.inpainting_network import InpaintingNetwork | |
from modules.keypoint_detector import KPDetector | |
from modules.bg_motion_predictor import BGMotionPredictor | |
from modules.dense_motion import DenseMotionNetwork | |
from modules.avd_network import AVDNetwork | |
import torch | |
from train import train | |
from train_avd import train_avd | |
from reconstruction import reconstruction | |
import os | |
if __name__ == "__main__": | |
if sys.version_info[0] < 3: | |
raise Exception("You must use Python 3 or higher. Recommended version is Python 3.9") | |
parser = ArgumentParser() | |
parser.add_argument("--config", default="config/vox-256.yaml", help="path to config") | |
parser.add_argument("--mode", default="train", choices=["train", "reconstruction", "train_avd"]) | |
parser.add_argument("--log_dir", default='log', help="path to log into") | |
parser.add_argument("--checkpoint", default=None, help="path to checkpoint to restore") | |
parser.add_argument("--device_ids", default="0,1", type=lambda x: list(map(int, x.split(','))), | |
help="Names of the devices comma separated.") | |
opt = parser.parse_args() | |
with open(opt.config) as f: | |
config = yaml.load(f) | |
if opt.checkpoint is not None: | |
log_dir = os.path.join(*os.path.split(opt.checkpoint)[:-1]) | |
else: | |
log_dir = os.path.join(opt.log_dir, os.path.basename(opt.config).split('.')[0]) | |
log_dir += ' ' + strftime("%d_%m_%y_%H.%M.%S", gmtime()) | |
inpainting = InpaintingNetwork(**config['model_params']['generator_params'], | |
**config['model_params']['common_params']) | |
if torch.cuda.is_available(): | |
cuda_device = torch.device('cuda:'+str(opt.device_ids[0])) | |
inpainting.to(cuda_device) | |
kp_detector = KPDetector(**config['model_params']['common_params']) | |
dense_motion_network = DenseMotionNetwork(**config['model_params']['common_params'], | |
**config['model_params']['dense_motion_params']) | |
if torch.cuda.is_available(): | |
kp_detector.to(opt.device_ids[0]) | |
dense_motion_network.to(opt.device_ids[0]) | |
bg_predictor = None | |
if (config['model_params']['common_params']['bg']): | |
bg_predictor = BGMotionPredictor() | |
if torch.cuda.is_available(): | |
bg_predictor.to(opt.device_ids[0]) | |
avd_network = None | |
if opt.mode == "train_avd": | |
avd_network = AVDNetwork(num_tps=config['model_params']['common_params']['num_tps'], | |
**config['model_params']['avd_network_params']) | |
if torch.cuda.is_available(): | |
avd_network.to(opt.device_ids[0]) | |
dataset = FramesDataset(is_train=(opt.mode.startswith('train')), **config['dataset_params']) | |
if not os.path.exists(log_dir): | |
os.makedirs(log_dir) | |
if not os.path.exists(os.path.join(log_dir, os.path.basename(opt.config))): | |
copy(opt.config, log_dir) | |
if opt.mode == 'train': | |
print("Training...") | |
train(config, inpainting, kp_detector, bg_predictor, dense_motion_network, opt.checkpoint, log_dir, dataset) | |
elif opt.mode == 'train_avd': | |
print("Training Animation via Disentaglement...") | |
train_avd(config, inpainting, kp_detector, bg_predictor, dense_motion_network, avd_network, opt.checkpoint, log_dir, dataset) | |
elif opt.mode == 'reconstruction': | |
print("Reconstruction...") | |
reconstruction(config, inpainting, kp_detector, bg_predictor, dense_motion_network, opt.checkpoint, log_dir, dataset) | |