import matplotlib matplotlib.use('Agg') import sys import yaml from argparse import ArgumentParser from tqdm import tqdm from scipy.spatial import ConvexHull import numpy as np import imageio from skimage.transform import resize from skimage import img_as_ubyte import torch from modules.inpainting_network import InpaintingNetwork from modules.keypoint_detector import KPDetector from modules.dense_motion import DenseMotionNetwork from modules.avd_network import AVDNetwork if sys.version_info[0] < 3: raise Exception("You must use Python 3 or higher. Recommended version is Python 3.9") def relative_kp(kp_source, kp_driving, kp_driving_initial): source_area = ConvexHull(kp_source['fg_kp'][0].data.cpu().numpy()).volume driving_area = ConvexHull(kp_driving_initial['fg_kp'][0].data.cpu().numpy()).volume adapt_movement_scale = np.sqrt(source_area) / np.sqrt(driving_area) kp_new = {k: v for k, v in kp_driving.items()} kp_value_diff = (kp_driving['fg_kp'] - kp_driving_initial['fg_kp']) kp_value_diff *= adapt_movement_scale kp_new['fg_kp'] = kp_value_diff + kp_source['fg_kp'] return kp_new def load_checkpoints(config_path, checkpoint_path, device): with open(config_path) as f: config = yaml.load(f) inpainting = InpaintingNetwork(**config['model_params']['generator_params'], **config['model_params']['common_params']) kp_detector = KPDetector(**config['model_params']['common_params']) dense_motion_network = DenseMotionNetwork(**config['model_params']['common_params'], **config['model_params']['dense_motion_params']) avd_network = AVDNetwork(num_tps=config['model_params']['common_params']['num_tps'], **config['model_params']['avd_network_params']) kp_detector.to(device) dense_motion_network.to(device) inpainting.to(device) avd_network.to(device) checkpoint = torch.load(checkpoint_path, map_location=device) inpainting.load_state_dict(checkpoint['inpainting_network']) kp_detector.load_state_dict(checkpoint['kp_detector']) dense_motion_network.load_state_dict(checkpoint['dense_motion_network']) if 'avd_network' in checkpoint: avd_network.load_state_dict(checkpoint['avd_network']) inpainting.eval() kp_detector.eval() dense_motion_network.eval() avd_network.eval() return inpainting, kp_detector, dense_motion_network, avd_network def make_animation(source_image, driving_video, inpainting_network, kp_detector, dense_motion_network, avd_network, device, mode = 'relative'): assert mode in ['standard', 'relative', 'avd'] with torch.no_grad(): predictions = [] source = torch.tensor(source_image[np.newaxis].astype(np.float32)).permute(0, 3, 1, 2) source = source.to(device) driving = torch.tensor(np.array(driving_video)[np.newaxis].astype(np.float32)).permute(0, 4, 1, 2, 3).to(device) kp_source = kp_detector(source) kp_driving_initial = kp_detector(driving[:, :, 0]) for frame_idx in tqdm(range(driving.shape[2])): driving_frame = driving[:, :, frame_idx] driving_frame = driving_frame.to(device) kp_driving = kp_detector(driving_frame) if mode == 'standard': kp_norm = kp_driving elif mode=='relative': kp_norm = relative_kp(kp_source=kp_source, kp_driving=kp_driving, kp_driving_initial=kp_driving_initial) elif mode == 'avd': kp_norm = avd_network(kp_source, kp_driving) dense_motion = dense_motion_network(source_image=source, kp_driving=kp_norm, kp_source=kp_source, bg_param = None, dropout_flag = False) out = inpainting_network(source, dense_motion) predictions.append(np.transpose(out['prediction'].data.cpu().numpy(), [0, 2, 3, 1])[0]) return predictions def find_best_frame(source, driving, cpu): import face_alignment def normalize_kp(kp): kp = kp - kp.mean(axis=0, keepdims=True) area = ConvexHull(kp[:, :2]).volume area = np.sqrt(area) kp[:, :2] = kp[:, :2] / area return kp fa = face_alignment.FaceAlignment(face_alignment.LandmarksType._2D, flip_input=True, device= 'cpu' if cpu else 'cuda') kp_source = fa.get_landmarks(255 * source)[0] kp_source = normalize_kp(kp_source) norm = float('inf') frame_num = 0 for i, image in tqdm(enumerate(driving)): kp_driving = fa.get_landmarks(255 * image)[0] kp_driving = normalize_kp(kp_driving) new_norm = (np.abs(kp_source - kp_driving) ** 2).sum() if new_norm < norm: norm = new_norm frame_num = i return frame_num if __name__ == "__main__": parser = ArgumentParser() parser.add_argument("--config", required=True, help="path to config") parser.add_argument("--checkpoint", default='checkpoints/vox.pth.tar', help="path to checkpoint to restore") parser.add_argument("--source_image", default='./assets/source.png', help="path to source image") parser.add_argument("--driving_video", default='./assets/driving.mp4', help="path to driving video") parser.add_argument("--result_video", default='./result.mp4', help="path to output") parser.add_argument("--img_shape", default="256,256", type=lambda x: list(map(int, x.split(','))), help='Shape of image, that the model was trained on.') parser.add_argument("--mode", default='relative', choices=['standard', 'relative', 'avd'], help="Animate mode: ['standard', 'relative', 'avd'], when use the relative mode to animate a face, use '--find_best_frame' can get better quality result") parser.add_argument("--find_best_frame", dest="find_best_frame", action="store_true", help="Generate from the frame that is the most alligned with source. (Only for faces, requires face_aligment lib)") parser.add_argument("--cpu", dest="cpu", action="store_true", help="cpu mode.") opt = parser.parse_args() source_image = imageio.imread(opt.source_image) reader = imageio.get_reader(opt.driving_video) fps = reader.get_meta_data()['fps'] driving_video = [] try: for im in reader: driving_video.append(im) except RuntimeError: pass reader.close() if opt.cpu: device = torch.device('cpu') else: device = torch.device('cuda') source_image = resize(source_image, opt.img_shape)[..., :3] driving_video = [resize(frame, opt.img_shape)[..., :3] for frame in driving_video] inpainting, kp_detector, dense_motion_network, avd_network = load_checkpoints(config_path = opt.config, checkpoint_path = opt.checkpoint, device = device) if opt.find_best_frame: i = find_best_frame(source_image, driving_video, opt.cpu) print ("Best frame: " + str(i)) driving_forward = driving_video[i:] driving_backward = driving_video[:(i+1)][::-1] predictions_forward = make_animation(source_image, driving_forward, inpainting, kp_detector, dense_motion_network, avd_network, device = device, mode = opt.mode) predictions_backward = make_animation(source_image, driving_backward, inpainting, kp_detector, dense_motion_network, avd_network, device = device, mode = opt.mode) predictions = predictions_backward[::-1] + predictions_forward[1:] else: predictions = make_animation(source_image, driving_video, inpainting, kp_detector, dense_motion_network, avd_network, device = device, mode = opt.mode) imageio.mimsave(opt.result_video, [img_as_ubyte(frame) for frame in predictions], fps=fps)