Alesteba commited on
Commit
1f38e8d
·
1 Parent(s): 9605967

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +23 -11
app.py CHANGED
@@ -7,6 +7,8 @@ import PIL
7
 
8
  # class map > y con esto done;
9
 
 
 
10
  model_2 = models.torchvision.retinanet.model(
11
  backbone=models.torchvision.retinanet.backbones.resnext50_32x4d_fpn (pretrained=True),
12
  num_classes=len(class_map)
@@ -23,20 +25,30 @@ model_2.load_state_dict(state_dict)
23
 
24
  # use test img:
25
 
26
- img = PIL.Image.open('test.jpg')
27
-
28
  infer_tfms = tfms.A.Adapter([*tfms.A.resize_and_pad(size),tfms.A.Normalize()])
29
 
30
- pred_dict_2 = models.torchvision.retinanet.fastai.end2end_detect(
31
 
32
- img,
33
- infer_tfms,
34
- model_2.to("cpu"),
35
- class_map=class_map,
36
- detection_threshold=0.5
37
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38
 
39
- # modelo 2 -> construido:
40
 
41
- res_img = pred_dict_2['img']
42
 
 
7
 
8
  # class map > y con esto done;
9
 
10
+ class_map = ClassMap(['raccoon','banana'])
11
+
12
  model_2 = models.torchvision.retinanet.model(
13
  backbone=models.torchvision.retinanet.backbones.resnext50_32x4d_fpn (pretrained=True),
14
  num_classes=len(class_map)
 
25
 
26
  # use test img:
27
 
 
 
28
  infer_tfms = tfms.A.Adapter([*tfms.A.resize_and_pad(size),tfms.A.Normalize()])
29
 
30
+ def predict(img):
31
 
32
+ img = PIL.Image.fromarray(img, "RGB")
33
+
34
+ pred_dict_2 = models.torchvision.retinanet.fastai.end2end_detect(
35
+
36
+ img,
37
+ infer_tfms,
38
+ model_2.to("cpu"),
39
+ class_map=class_map,
40
+ detection_threshold=0.5
41
+ )
42
+
43
+ return pred_dict["img"]
44
+
45
+ gr.Interface(
46
+ fn=predict,
47
+ inputs=gr.inputs.Image(shape=(128, 128)),
48
+ outputs=[gr.outputs.Image(type="pil", label="VFNet Inference")],
49
+ examples=['raccoon-test_1.jpg','raccoon-test_2.jpg']
50
+ ).launch(share=False)
51
+
52
 
 
53
 
 
54