Spaces:
Build error
Build error
File size: 2,061 Bytes
ca4f7e4 2b7c6f5 2188f5e ca4f7e4 2188f5e 2b7c6f5 2188f5e 2b7c6f5 cdcffe0 ca4f7e4 17ab53b ca4f7e4 2188f5e 2337d90 2188f5e cdcffe0 17ab53b 0ee3f65 ca4f7e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
import gradio as gr
from optimum.intel.openvino import OVStableDiffusionPipeline
from diffusers.training_utils import set_seed
import time
pipe_fp32 = OVStableDiffusionPipeline.from_pretrained("OpenVINO/stable-diffusion-pokemons-fp32", compile=False)
pipe_fp32.reshape(batch_size=1, height=512, width=512, num_images_per_prompt=1)
pipe_fp32.compile()
pipe_int8 = OVStableDiffusionPipeline.from_pretrained("OpenVINO/stable-diffusion-pokemons-quantized-aggressive", compile=False)
pipe_int8.reshape(batch_size=1, height=512, width=512, num_images_per_prompt=1)
pipe_int8.compile()
pipe_tome_int8 = OVStableDiffusionPipeline.from_pretrained("OpenVINO/stable-diffusion-pokemons-tome-quantized-aggressive", compile=False)
pipe_tome_int8.reshape(batch_size=1, height=512, width=512, num_images_per_prompt=1)
pipe_tome_int8.compile()
prompt = "cartoon bird"
pipes = {
"FP32": pipe_fp32,
"8-bit quantized": pipe_int8,
"Merged and quantized": pipe_tome_int8
}
def generate(image, option):
pipe = pipes[option]
start_time = time.time()
output = pipe(prompt, num_inference_steps=50, output_type="pil")
elapsed_time = time.time() - start_time
return (output.images[0], "{:10.4f}".format(elapsed_time))
examples = ["cartoon bird",
"a drawing of a green pokemon with red eyes",
"plant pokemon in jungle"]
gr.Interface(
fn=generate,
inputs=[gr.inputs.Textbox(placeholder="cartoon bird", label="Prompt", lines=1),
gr.inputs.Dropdown(choices=[option for option in pipes.keys()], default="Merged and quantized", label="Model version"),
],
outputs=[gr.outputs.Image(type="pil", label="Generated Image"), gr.outputs.Textbox(label="Inference time")],
title="OpenVINO-optimized Stable Diffusion",
description="This is the Optimum-based demo for NNCF-optimized Stable Diffusion pipeline trained on 'lambdalabs/pokemon-blip-captions' dataset and running with OpenVINO.\n"
"The pipeline is run using 8 vCPUs (4 cores) only.",
theme="huggingface",
).launch() |