AlexN commited on
Commit
a63dc67
·
1 Parent(s): 353a6b7

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +55 -0
app.py ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torchvision
3
+ from PIL import Image
4
+ import cv2
5
+ import numpy as np
6
+ import matplotlib.pyplot as plt
7
+
8
+ from DataSet import QuestionDataSet
9
+ import TractionModel as plup
10
+
11
+ import random
12
+ from tqdm import tqdm
13
+
14
+ import gradio as gr
15
+
16
+
17
+ def snap(image):
18
+ return np.flipud(image)
19
+
20
+
21
+ def init_model(path):
22
+ model = plup.create_model()
23
+ model = plup.load_weights(model, path)
24
+ model.eval()
25
+ return model
26
+
27
+
28
+ def inference(image):
29
+ image = vanilla_transform(image).to(device).unsqueeze(0)
30
+ with torch.no_grad():
31
+ pred = model(image)
32
+ res = float(torch.sigmoid(pred[1].to("cpu")).numpy()[0])
33
+ return {'pull-up': res, 'no pull-up': 1 - res}
34
+
35
+
36
+ norm_mean = [0.485, 0.456, 0.406]
37
+ norm_std = [0.229, 0.224, 0.225]
38
+ vanilla_transform = torchvision.transforms.Compose([
39
+ torchvision.transforms.Resize(224),
40
+ torchvision.transforms.ToTensor(),
41
+ torchvision.transforms.Normalize(norm_mean, norm_std)])
42
+
43
+ model = init_model("output/model/model-score0.96-f1_10.9-f1_20.99.pt")
44
+ if torch.cuda.is_available():
45
+ device = torch.device("cuda")
46
+ else:
47
+ device = torch.device("cpu")
48
+ model = model.to(device)
49
+
50
+ iface = gr.Interface(inference, live=True, inputs=gr.inputs.Image(source="upload", tool=None, type='pil'),
51
+ outputs=gr.outputs.Label())
52
+
53
+ iface.test_launch()
54
+ if __name__ == "__main__":
55
+ iface.launch()