Spaces:
No application file
No application file
File size: 931 Bytes
feabdbe 2477995 4d6aed4 feabdbe 4d6aed4 feabdbe 4d6aed4 feabdbe 97151c0 feabdbe 97151c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 |
import os
from flask import Flask, request, jsonify
from transformers import pipeline
# Inicializamos Flask y el pipeline de Hugging Face
app = Flask(__name__)
# Cargar el modelo de Hugging Face para clasificaci贸n de emociones
emotion_classifier = pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-base")
@app.route("/predict", methods=["POST"])
def predict_emotion():
try:
# Obtener el texto del cuerpo de la solicitud
data = request.get_json()
text = data["text"]
# Hacer la predicci贸n
result = emotion_classifier(text)
# Retornar la emoci贸n predicha
return jsonify({"emotion": result[0]['label'], "confidence": result[0]['score']})
except Exception as e:
return jsonify({"error": str(e)}), 400
if __name__ == "__main__":
# Iniciar la aplicaci贸n Flask
app.run(host="0.0.0.0", port=5000)
|