Delete titanic_rn_2024_2.py
Browse files- titanic_rn_2024_2.py +0 -155
titanic_rn_2024_2.py
DELETED
@@ -1,155 +0,0 @@
|
|
1 |
-
# -*- coding: utf-8 -*-
|
2 |
-
"""Titanic_RN.ipynb
|
3 |
-
|
4 |
-
Automatically generated by Colab.
|
5 |
-
|
6 |
-
Original file is located at
|
7 |
-
https://colab.research.google.com/drive/1bBTik7AiMvb-_MLAf5rTR0STa8nfJp-d
|
8 |
-
"""
|
9 |
-
|
10 |
-
# importar la libreria
|
11 |
-
import pandas as pd
|
12 |
-
|
13 |
-
"""Crear el dataframe"""
|
14 |
-
|
15 |
-
training = pd.read_csv("titanic-train.csv")
|
16 |
-
training.head(5)
|
17 |
-
|
18 |
-
"""Verificar el cintenido del dataframe training"""
|
19 |
-
|
20 |
-
training.info()
|
21 |
-
|
22 |
-
"""Reemplazar los datos del genero a entero
|
23 |
-
male==> 0 female==> 1
|
24 |
-
"""
|
25 |
-
|
26 |
-
training['Gender'] = training['Gender'].apply(lambda toLabel:0 if toLabel=='male' else 1)
|
27 |
-
|
28 |
-
training.head(5)
|
29 |
-
|
30 |
-
"""Completar los valores Nan correspondiente a la edad ( Age ) con el promedio de edades validos"""
|
31 |
-
|
32 |
-
training["Age"].fillna(training["Age"].mean(),inplace=True)
|
33 |
-
|
34 |
-
training.head(5)
|
35 |
-
|
36 |
-
"""Verrificar los datos del dataset"""
|
37 |
-
|
38 |
-
training.info()
|
39 |
-
|
40 |
-
"""Indentificar los input data y los target data"""
|
41 |
-
|
42 |
-
y_target = training["Survived"].values
|
43 |
-
print(y_target)
|
44 |
-
|
45 |
-
columns = ["Fare","Pclass","Gender","Age","SibSp"]
|
46 |
-
x_input = training[list(columns)].values
|
47 |
-
print(x_input)
|
48 |
-
|
49 |
-
"""Definir la estructura de la red nuronal para el aprendizaje"""
|
50 |
-
|
51 |
-
import keras
|
52 |
-
from keras import layers
|
53 |
-
from keras import ops
|
54 |
-
|
55 |
-
model = keras.Sequential()
|
56 |
-
model.add(layers.Dense(16,input_dim=5,activation='relu'))
|
57 |
-
model.add(layers.Dense(16, activation="relu", name="layer1"))
|
58 |
-
model.add(layers.Dense(1, activation='sigmoid',name="layer2"))
|
59 |
-
|
60 |
-
"""Configurar los parametros de la red"""
|
61 |
-
|
62 |
-
model.compile(loss='binary_crossentropy',optimizer='adam',metrics=['accuracy'])
|
63 |
-
|
64 |
-
"""Realizar el proceso de entrenamiento de la red neuronal"""
|
65 |
-
|
66 |
-
model.fit(x_input,y_target,epochs=1000)
|
67 |
-
|
68 |
-
"""Evaluar la presicion."""
|
69 |
-
|
70 |
-
score = model.evaluate(x_input,y_target)
|
71 |
-
print("\n %s: %.2f%%" % (model.metrics_names[1],score[1]*100))
|
72 |
-
|
73 |
-
XX = np.array(x_input[[2]])
|
74 |
-
print(XX)
|
75 |
-
respuesta = model.predict(XX)
|
76 |
-
print(respuesta.round()[0][0])
|
77 |
-
|
78 |
-
y_simulado = []
|
79 |
-
for i in range(len(y_target)):
|
80 |
-
y_simulado.append(model.predict(x_input[[i]]).round())
|
81 |
-
print(y_simulado)
|
82 |
-
|
83 |
-
import numpy as np
|
84 |
-
respuesta = model.predict(np.array([[83.475, 1, 1, 35, 1,]]))
|
85 |
-
#respuesta = model.predict(np.array([[ 7.8958, 3.0, 0.0, 29.97086721, 0.0]]))
|
86 |
-
#respuesta = model.predict(np.array([[82.2667,1,1,23.000000,1]]))
|
87 |
-
print(respuesta.round()[0][0])
|
88 |
-
|
89 |
-
precision = 0
|
90 |
-
for i in range(len(y_simulado)):
|
91 |
-
if y_target[i]==y_simulado[i].round()[0][0]:
|
92 |
-
precision = precision + 1
|
93 |
-
precision = precision/float(len(y_simulado))
|
94 |
-
print(precision)
|
95 |
-
|
96 |
-
y_simulado_lista = []
|
97 |
-
for i in range(len(y_simulado)):
|
98 |
-
y_simulado_lista.append(y_simulado[i].round()[0][0])
|
99 |
-
print(y_simulado_lista)
|
100 |
-
|
101 |
-
import numpy as np
|
102 |
-
from sklearn.metrics import confusion_matrix
|
103 |
-
Matriz_de_Confusion = confusion_matrix(y_target, y_simulado_lista)
|
104 |
-
Matriz_de_Confusion
|
105 |
-
"""sensibilidad"""
|
106 |
-
#sensibilidad = (Matriz_de_Confusion[0,0])/np.sum(Matriz_de_Confusion[0,0]+ Matriz_de_Confusion[1,0])
|
107 |
-
VP = Matriz_de_Confusion[0,0]
|
108 |
-
FN = Matriz_de_Confusion[1,0]
|
109 |
-
sensibilidad = VP/(VP+FN)
|
110 |
-
sensibilidad
|
111 |
-
|
112 |
-
"""especificidad"""
|
113 |
-
#especificidad = (Matriz_de_Confusion[1,1])/np.sum(Matriz_de_Confusion[1,1]+ Matriz_de_Confusion[0,1])
|
114 |
-
VN = Matriz_de_Confusion[1,1]
|
115 |
-
FP = Matriz_de_Confusion[0,1]
|
116 |
-
especificidad = VN/(VN+FP)
|
117 |
-
especificidad
|
118 |
-
|
119 |
-
from sklearn.metrics import confusion_matrix
|
120 |
-
from matplotlib import pyplot as plt
|
121 |
-
from sklearn.metrics import classification_report
|
122 |
-
|
123 |
-
conf_mat = confusion_matrix(y_true=y_target, y_pred=y_simulado_lista)
|
124 |
-
print('Matriz de Confusión - DATOS ORIGINALES:\n', conf_mat)
|
125 |
-
print('Métricas de Matriz de Confusión - DATOS ORIGINALES:\n',classification_report(y_target,y_simulado_lista))
|
126 |
-
labels = ['Class 0', 'Class 1']
|
127 |
-
fig = plt.figure()
|
128 |
-
ax = fig.add_subplot(111)
|
129 |
-
cax = ax.matshow(conf_mat, cmap=plt.cm.Blues)
|
130 |
-
fig.colorbar(cax)
|
131 |
-
ax.set_xticklabels([''] + labels)
|
132 |
-
ax.set_yticklabels([''] + labels)
|
133 |
-
plt.xlabel('Predicted')
|
134 |
-
plt.ylabel('Expected')
|
135 |
-
plt.show()
|
136 |
-
|
137 |
-
#Grabando la estructura
|
138 |
-
model_json = model.to_json()
|
139 |
-
with open("mimodel.json","w") as json_file:
|
140 |
-
json_file.write(model_json)
|
141 |
-
|
142 |
-
# Grabando los pesos
|
143 |
-
model.save_weights("mimodelo.weights.h5")
|
144 |
-
print("modelo guardado")
|
145 |
-
|
146 |
-
from keras.models import Model,model_from_json
|
147 |
-
json_file = open("model.json",'r')
|
148 |
-
loaded_model_json = json_file.read()
|
149 |
-
json_file.close()
|
150 |
-
loaded_model = model_from_json(loaded_model_json)
|
151 |
-
loaded_model.load_weights("mimodelo.weights.h5")
|
152 |
-
print("modelo cargado en el disco")
|
153 |
-
loaded_model.compile(loss='binary_crossentropy',optimizer='adam',metrics=['accuracy'])
|
154 |
-
|
155 |
-
print(loaded_model.predict(np.array([[83.475, 1, 1, 35, 1,]])).round()[0][0])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|