Update app.py
Browse files
app.py
CHANGED
@@ -1,28 +1,25 @@
|
|
1 |
-
|
2 |
-
from
|
3 |
-
from typing import List
|
4 |
|
5 |
-
|
6 |
-
|
7 |
|
8 |
-
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
-
# Ruta de predicci贸n
|
14 |
-
@app.post("/predict/")
|
15 |
-
async def predict(data: InputData):
|
16 |
-
print(f"Data: {data}")
|
17 |
-
try:
|
18 |
-
# Convertir la lista de entrada a un array de NumPy para la predicci贸n
|
19 |
-
input_data = data.data
|
20 |
-
print(input_data)
|
21 |
-
a = input_data[0]
|
22 |
-
b = input_data[1]
|
23 |
-
c = sumar(a,b)
|
24 |
-
prediction = c
|
25 |
-
#return {"prediction": prediction.tolist()}
|
26 |
-
return {"prediction": prediction}
|
27 |
-
except Exception as e:
|
28 |
-
raise HTTPException(status_code=500, detail=str(e))
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline
|
|
|
3 |
|
4 |
+
# Cargar el modelo de Hugging Face para an谩lisis de emociones
|
5 |
+
classifier = pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-large")
|
6 |
|
7 |
+
# Funci贸n para predecir la emoci贸n
|
8 |
+
def detect_emotion(text):
|
9 |
+
result = classifier(text)
|
10 |
+
emotion = result[0]['label']
|
11 |
+
return emotion
|
12 |
|
13 |
+
# Crear la interfaz con Gradio
|
14 |
+
interface = gr.Interface(
|
15 |
+
fn=detect_emotion,
|
16 |
+
inputs="text",
|
17 |
+
outputs="text",
|
18 |
+
live=True,
|
19 |
+
title="Detector de Emociones",
|
20 |
+
description="Introduce un texto para detectar la emoci贸n que expresa."
|
21 |
+
)
|
22 |
+
|
23 |
+
# Lanzar la interfaz
|
24 |
+
interface.launch()
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|