AlexandreL2024's picture
Update tasks/image.py
a89b6fd verified
raw
history blame
10.3 kB
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import transforms
from torch.utils.data import DataLoader, Dataset
from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset
import numpy as np
from sklearn.metrics import accuracy_score, precision_score, recall_score
import random
import os
from .utils.evaluation import ImageEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info
from dotenv import load_dotenv
load_dotenv()
router = APIRouter()
DESCRIPTION = "Random Baseline"
ROUTE = "/image"
def parse_boxes(annotation_string):
"""Parse multiple boxes from a single annotation string.
Each box has 5 values: class_id, x_center, y_center, width, height"""
values = [float(x) for x in annotation_string.strip().split()]
boxes = []
# Each box has 5 values
for i in range(0, len(values), 5):
if i + 5 <= len(values):
# Skip class_id (first value) and take the next 4 values
box = values[i+1:i+5]
boxes.append(box)
return boxes
def compute_iou(box1, box2):
"""Compute Intersection over Union (IoU) between two YOLO format boxes."""
# Convert YOLO format (x_center, y_center, width, height) to corners
def yolo_to_corners(box):
x_center, y_center, width, height = box
x1 = x_center - width/2
y1 = y_center - height/2
x2 = x_center + width/2
y2 = y_center + height/2
return np.array([x1, y1, x2, y2])
box1_corners = yolo_to_corners(box1)
box2_corners = yolo_to_corners(box2)
# Calculate intersection
x1 = max(box1_corners[0], box2_corners[0])
y1 = max(box1_corners[1], box2_corners[1])
x2 = min(box1_corners[2], box2_corners[2])
y2 = min(box1_corners[3], box2_corners[3])
intersection = max(0, x2 - x1) * max(0, y2 - y1)
# Calculate union
box1_area = (box1_corners[2] - box1_corners[0]) * (box1_corners[3] - box1_corners[1])
box2_area = (box2_corners[2] - box2_corners[0]) * (box2_corners[3] - box2_corners[1])
union = box1_area + box2_area - intersection
return intersection / (union + 1e-6)
def compute_max_iou(true_boxes, pred_box):
"""Compute maximum IoU between a predicted box and all true boxes"""
max_iou = 0
for true_box in true_boxes:
iou = compute_iou(true_box, pred_box)
max_iou = max(max_iou, iou)
return max_iou
@router.post(ROUTE, tags=["Image Task"],
description=DESCRIPTION)
async def evaluate_image(request: ImageEvaluationRequest):
"""
Evaluate image classification and object detection for forest fire smoke.
Current Model: Random Baseline
- Makes random predictions for both classification and bounding boxes
- Used as a baseline for comparison
Metrics:
- Classification accuracy: Whether an image contains smoke or not
- Object Detection accuracy: IoU (Intersection over Union) for smoke bounding boxes
"""
# Get space info
username, space_url = get_space_info()
# Load and prepare the dataset
dataset = load_dataset(request.dataset_name, token=os.getenv("HF_TOKEN"))
# Split dataset
train_test = dataset["train"]
test_dataset = dataset["val"]
# Start tracking emissions
tracker.start()
tracker.start_task("inference")
#--------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE CODE HERE
# Update the code below to replace the random baseline with your model inference
#--------------------------------------------------------------------------------------------
class ImageClassifier(nn.Module):
def __init__(self):
super(ImageClassifier, self).__init__()
self.conv1 = nn.Conv2d(3, 32, kernel_size=3, padding=1)
self.relu1 = nn.ReLU()
self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, padding=1)
self.relu2 = nn.ReLU()
self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)
self.fc1 = nn.Linear(64 * 16 * 16, 128)
self.relu3 = nn.ReLU()
self.fc2 = nn.Linear(128, 2) # Output layer with 2 classes (0, 1)
def forward(self, x):
x = self.pool1(self.relu1(self.conv1(x)))
x = self.pool2(self.relu2(self.conv2(x)))
x = x.view(x.size(0), -1)
x = self.relu3(self.fc1(x))
x = self.fc2(x)
return x
class CustomDataset(Dataset, labels):
def __init__(self, dataset, transform=None):
self.dataset = dataset
self.transform = transform
self.labels = labels
def __len__(self):
return len(self.dataset)
def __getitem__(self, idx):
image = self.dataset[idx]['image']
label = self.labels[idx]
if self.transform:
image = self.transform(image)
return image, label
# Create an instance of the model
model = ImageClassifier()
# Define loss function and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.1)
predictions = []
true_labels = []
pred_boxes = []
true_boxes_list = [] # List of lists, each inner list contains boxes for one image
# Data Augmentation:
torch.manual_seed(0)
transform = transforms.Compose([
transforms.RandomCrop(size=(512, 512)), # Crop an image to reduce informations
transforms.Resize(size=(64, 64)), # Resize to a standard size, experiment with different sizes
transforms.RandomHorizontalFlip(),
transforms.RandomVerticalFlip(),
transforms.RandomRotation(30), # Add random rotations
transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2), # Color variations
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) # Normalize for ImageNet
])
# Dataset Loader for CNN computation
train_loader = DataLoader(train_test, batch_size=64, shuffle=False)
test_loader = DataLoader(test_dataset, batch_size=64, shuffle=True)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
# Training loop
num_epochs = 10
for epoch in range(num_epochs):
for images, labels in train_loader :
images, labels = images.to(device), labels.to(device)
# Zero the parameter gradients
optimizer.zero_grad()
# Forward + backward + optimize
outputs = model(images)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
print(f'Epoch [{epoch + 1}/10], Loss: {loss.item():.4f}')
# Evaluation loop
model.eval() # Set the model to evaluation mode
with torch.no_grad():
for images, labels in test_loader:
images, labels = images.to(device), labels.to(device)
outputs = model(images)
# Apply sigmoid to get probabilities
probabilities = torch.sigmoid(outputs)
#Get the predicted class with maximum probability
_, prediction = torch.max(probabilities, 1)
predictions.extend(prediction.cpu().numpy())
for example in test_dataset:
# Parse true annotation (YOLO format: class_id x_center y_center width height)
annotation = example.get("annotations", "").strip()
has_smoke = len(annotation) > 0
true_labels.append(int(has_smoke))
# If there's a true box, parse it and make random box prediction
if has_smoke:
# Parse all true boxes from the annotation
image_true_boxes = parse_boxes(annotation)
true_boxes_list.append(image_true_boxes)
# For baseline, make one random box prediction per image
# In a real model, you might want to predict multiple boxes
random_box = [
random.random(), # x_center
random.random(), # y_center
random.random() * 0.5, # width (max 0.5)
random.random() * 0.5 # height (max 0.5)
]
pred_boxes.append(random_box)
#--------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE STOPS HERE
#--------------------------------------------------------------------------------------------
# Stop tracking emissions
emissions_data = tracker.stop_task()
# Calculate classification metrics
classification_accuracy = accuracy_score(true_labels, predictions)
classification_precision = precision_score(true_labels, predictions)
classification_recall = recall_score(true_labels, predictions)
# Calculate mean IoU for object detection (only for images with smoke)
# For each image, we compute the max IoU between the predicted box and all true boxes
ious = []
for true_boxes, pred_box in zip(true_boxes_list, pred_boxes):
max_iou = compute_max_iou(true_boxes, pred_box)
ious.append(max_iou)
mean_iou = float(np.mean(ious)) if ious else 0.0
# Prepare results dictionary
results = {
"username": username,
"space_url": space_url,
"submission_timestamp": datetime.now().isoformat(),
"model_description": DESCRIPTION,
"classification_accuracy": float(classification_accuracy),
"classification_precision": float(classification_precision),
"classification_recall": float(classification_recall),
"mean_iou": mean_iou,
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
"emissions_gco2eq": emissions_data.emissions * 1000,
"emissions_data": clean_emissions_data(emissions_data),
"api_route": ROUTE,
"dataset_config": {
"dataset_name": request.dataset_name,
"test_size": request.test_size,
"test_seed": request.test_seed
}
}
return results