Spaces:
Sleeping
Sleeping
Update tasks/image.py
Browse files- tasks/image.py +24 -12
tasks/image.py
CHANGED
@@ -3,6 +3,7 @@ import torch.nn as nn
|
|
3 |
import torch.optim as optim
|
4 |
from torchvision import transforms
|
5 |
from torch.utils.data import DataLoader, Dataset
|
|
|
6 |
|
7 |
from fastapi import APIRouter
|
8 |
from datetime import datetime
|
@@ -180,19 +181,30 @@ async def evaluate_image(request: ImageEvaluationRequest):
|
|
180 |
|
181 |
|
182 |
# Training loop
|
183 |
-
num_epochs = 10
|
184 |
-
for epoch in range(num_epochs):
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
196 |
|
197 |
# Evaluation loop
|
198 |
model.eval() # Set the model to evaluation mode
|
|
|
3 |
import torch.optim as optim
|
4 |
from torchvision import transforms
|
5 |
from torch.utils.data import DataLoader, Dataset
|
6 |
+
from huggingface_hub import hf_hub_download
|
7 |
|
8 |
from fastapi import APIRouter
|
9 |
from datetime import datetime
|
|
|
181 |
|
182 |
|
183 |
# Training loop
|
184 |
+
# num_epochs = 10
|
185 |
+
# for epoch in range(num_epochs):
|
186 |
+
# for images, labels in train_loader :
|
187 |
+
# images, labels = images.to(device), labels.to(device)
|
188 |
+
# # Zero the parameter gradients
|
189 |
+
# optimizer.zero_grad()
|
190 |
|
191 |
+
# # Forward + backward + optimize
|
192 |
+
# outputs = model(images)
|
193 |
+
# loss = criterion(outputs, labels)
|
194 |
+
# loss.backward()
|
195 |
+
# optimizer.step()
|
196 |
+
# print(f'Epoch [{epoch + 1}/10], Loss: {loss.item():.4f}')
|
197 |
+
|
198 |
+
# Charging pre-trained model
|
199 |
+
repo_id = "AlexandreL2024/CNN-Image-Classification"
|
200 |
+
filename = "model_CNN_2Layers.pth"
|
201 |
+
|
202 |
+
# Upload file .pth from Hugging Face
|
203 |
+
model_path = hf_hub_download(repo_id=repo_id, filename=filename)
|
204 |
+
|
205 |
+
# Charger le modèle avec torch.load()
|
206 |
+
model = ImageClassifier()
|
207 |
+
model = model.load_state_dict(torch.load(model_path))
|
208 |
|
209 |
# Evaluation loop
|
210 |
model.eval() # Set the model to evaluation mode
|