Alexndem's picture
Upload app.py
7a93956
# -*- coding: utf-8 -*-
"""HW3_ml.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1z4ht7K9pttbgWmDDnrQhqoZ6SYAiaeUe
"""
# !pip -q uninstall gradio -y
# !pip -q install gradio==3.50.2
# !pip -q install datasets
import gradio as gr
import numpy as np
import torch
from datasets import load_dataset
from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline, WhisperProcessor
device = "cuda:0" if torch.cuda.is_available() else "cpu"
# load speech translation checkpoint
asr_pipe = pipeline("automatic-speech-recognition", model="voidful/wav2vec2-xlsr-multilingual-56", device=device)
# !pip -q install sentencepiece
# load text-to-speech checkpoint and speaker embeddings
# processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
processor = WhisperProcessor.from_pretrained(
"openai/whisper-small")
translator1 = pipeline("translation", model="Helsinki-NLP/opus-mt-mul-en")
translator2 = pipeline("translation", model="Helsinki-NLP/opus-mt-en-ru")
from transformers import VitsModel, VitsTokenizer
# model = pipeline("text-to-speech", model="suno/bark-small")
model = VitsModel.from_pretrained("facebook/mms-tts-rus")
tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-rus")
def translator_mul_ru(text):
translation = translator2(translator1(text)[0]['translation_text'])
return translation[0]['translation_text']
def translate(audio):
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
return outputs["text"]
def synthesise(text):
translated_text = translator_mul_ru(text)
inputs = tokenizer(translated_text, return_tensors="pt")
input_ids = inputs["input_ids"]
with torch.no_grad():
outputs = model(input_ids)
speech = outputs["waveform"]
return speech.cpu()
def speech_to_speech_translation(audio):
translated_text = translate(audio)
print(translated_text)
synthesised_speech = synthesise(translated_text)
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
return 16000, synthesised_speech[0]
title = "Cascaded STST"
description = """
* Сначала модель распознает речь с помощью voidful/wav2vec2-xlsr-multilingual-56 и возвращает текст на любом из 56 языков.
* Далее происходит перевод текста с любого на английский с помощью Helsinki-NLP/opus-mt-mul-en, а затем с английского на русский также с помощью Helsinki-NLP/opus-mt-en-ru
* В конце осуществляется воспроизведение русского текста моделью facebook/mms-tts-rus
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in Russian. Demo uses facebook/mms-tts-rus model for text-to-speech:
![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
"""
demo = gr.Blocks()
mic_translate = gr.Interface(
fn=speech_to_speech_translation,
inputs=gr.Audio(source="microphone", type="filepath"),
outputs=gr.Audio(label="Generated Speech", type="numpy"),
title=title,
description=description,
)
file_translate = gr.Interface(
fn=speech_to_speech_translation,
inputs=gr.Audio(source="upload", type="filepath"),
outputs=gr.Audio(label="Generated Speech", type="numpy"),
title=title,
description=description,
)
with demo:
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "File"])
demo.launch()