Alfasign commited on
Commit
e08a4cf
·
1 Parent(s): c5cfb64

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +13 -23
app.py CHANGED
@@ -1,28 +1,18 @@
1
 
2
- import streamlit as st
3
  from transformers import GPT2LMHeadModel, GPT2Tokenizer
4
 
5
- @st.cache(allow_output_mutation=True)
6
- def load_model():
7
- MODEL_NAME = "gpt2" # Ändern Sie dies entsprechend
8
- tokenizer = GPT2Tokenizer.from_pretrained(MODEL_NAME)
9
- model = GPT2LMHeadModel.from_pretrained(MODEL_NAME)
10
- return model, tokenizer
11
 
12
- def generate_text(prompt, model, tokenizer):
13
- inputs = tokenizer.encode(prompt, return_tensors="pt")
14
- outputs = model.generate(inputs, max_length=200, num_return_sequences=5)
15
- generated_text = [tokenizer.decode(output) for output in outputs]
16
- return generated_text
17
 
18
- model, tokenizer = load_model()
19
-
20
- st.title("Textgenerierung mit GPT-2")
21
- prompt = st.text_input("Geben Sie einen Prompt ein:")
22
- if prompt:
23
- with st.spinner("Generieren von Text..."):
24
- generated_text = generate_text(prompt, model, tokenizer)
25
- st.header("Generierter Text:")
26
- for i, text in enumerate(generated_text):
27
- st.subheader(f"Option {i+1}:")
28
- st.write(text)
 
1
 
 
2
  from transformers import GPT2LMHeadModel, GPT2Tokenizer
3
 
4
+ class EinfachPrompt:
5
+ def __init__(self):
6
+ self.tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
7
+ self.model = GPT2LMHeadModel.from_pretrained("gpt2")
 
 
8
 
9
+ def generate(self, prompt):
10
+ inputs = self.tokenizer.encode(prompt, return_tensors="pt")
11
+ outputs = self.model.generate(inputs, max_length=150, num_return_sequences=1, temperature=0.7)
12
+ generated = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
13
+ return generated
14
 
15
+ if __name__ == "__main__":
16
+ einfach_prompt = EinfachPrompt()
17
+ prompt = "Erzähl mir etwas über EinfachPrompt."
18
+ print(einfach_prompt.generate(prompt))