import streamlit as st from transformers import GPT2LMHeadModel, GPT2Tokenizer @st.cache(allow_output_mutation=True) def load_model(): MODEL_NAME = "gpt2" # Ă„ndern Sie dies entsprechend tokenizer = GPT2Tokenizer.from_pretrained(MODEL_NAME) model = GPT2LMHeadModel.from_pretrained(MODEL_NAME) return model, tokenizer def generate_text(prompt, model, tokenizer): inputs = tokenizer.encode(prompt, return_tensors="pt") outputs = model.generate(inputs, max_length=200, num_return_sequences=5) generated_text = [tokenizer.decode(output) for output in outputs] return generated_text model, tokenizer = load_model() st.title("Textgenerierung mit GPT-2") prompt = st.text_input("Geben Sie einen Prompt ein:") if prompt: with st.spinner("Generieren von Text..."): generated_text = generate_text(prompt, model, tokenizer) st.header("Generierter Text:") for i, text in enumerate(generated_text): st.subheader(f"Option {i+1}:") st.write(text)