Alfasign's picture
Update app.py
9493940
raw
history blame
940 Bytes
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
def generate_text(prompt, style):
model_name = "nomic-ai/gpt4all-13b-snoozy"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
full_prompt = f"{prompt} Schreibe die Antwort im Stil von {style}."
inputs = tokenizer.encode(full_prompt, return_tensors='pt')
outputs = model.generate(inputs, max_length=150, num_return_sequences=1, no_repeat_ngram_size=2)
generated = outputs[:,inputs.shape[-1]:]
result = tokenizer.decode(generated[0], skip_special_tokens=True)
return result
styles = ["eine formelle E-Mail", "eine Kurzgeschichte", "ein Gedicht", "ein wissenschaftlicher Bericht", "eine Zeitungsartikel"]
iface = gr.Interface(fn=generate_text, inputs=["textbox", gr.inputs.Dropdown(choices=styles)], outputs="text")
iface.launch()