import gradio as gr import torch from transformers import AutoTokenizer, AutoModelForCausalLM def generate_text(prompt, style): model_name = "nomic-ai/gpt4all-13b-snoozy" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) full_prompt = f"{prompt} Schreibe die Antwort im Stil von {style}." inputs = tokenizer.encode(full_prompt, return_tensors='pt') outputs = model.generate(inputs, max_length=150, num_return_sequences=1, no_repeat_ngram_size=2) generated = outputs[:,inputs.shape[-1]:] result = tokenizer.decode(generated[0], skip_special_tokens=True) return result styles = ["eine formelle E-Mail", "eine Kurzgeschichte", "ein Gedicht", "ein wissenschaftlicher Bericht", "eine Zeitungsartikel"] iface = gr.Interface(fn=generate_text, inputs=["textbox", gr.inputs.Dropdown(choices=styles)], outputs="text") iface.launch()